"""Launching tool for DGL distributed training""" import os import stat import sys import subprocess import argparse import signal import logging import time import json import multiprocessing import re from functools import partial from threading import Thread DEFAULT_PORT = 30050 def cleanup_proc(get_all_remote_pids, conn): '''This process tries to clean up the remote training tasks. ''' print('cleanupu process runs') # This process should not handle SIGINT. signal.signal(signal.SIGINT, signal.SIG_IGN) data = conn.recv() # If the launch process exits normally, this process doesn't need to do anything. if data == 'exit': sys.exit(0) else: remote_pids = get_all_remote_pids() # Otherwise, we need to ssh to each machine and kill the training jobs. for (ip, port), pids in remote_pids.items(): kill_process(ip, port, pids) print('cleanup process exits') def kill_process(ip, port, pids): '''ssh to a remote machine and kill the specified processes. ''' curr_pid = os.getpid() killed_pids = [] # If we kill child processes first, the parent process may create more again. This happens # to Python's process pool. After sorting, we always kill parent processes first. pids.sort() for pid in pids: assert curr_pid != pid print('kill process {} on {}:{}'.format(pid, ip, port), flush=True) kill_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'kill {}\''.format(pid) subprocess.run(kill_cmd, shell=True) killed_pids.append(pid) # It's possible that some of the processes are not killed. Let's try again. for i in range(3): killed_pids = get_killed_pids(ip, port, killed_pids) if len(killed_pids) == 0: break else: killed_pids.sort() for pid in killed_pids: print('kill process {} on {}:{}'.format(pid, ip, port), flush=True) kill_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'kill -9 {}\''.format(pid) subprocess.run(kill_cmd, shell=True) def get_killed_pids(ip, port, killed_pids): '''Get the process IDs that we want to kill but are still alive. ''' killed_pids = [str(pid) for pid in killed_pids] killed_pids = ','.join(killed_pids) ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'ps -p {} -h\''.format(killed_pids) res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE) pids = [] for p in res.stdout.decode('utf-8').split('\n'): l = p.split() if len(l) > 0: pids.append(int(l[0])) return pids def execute_remote(cmd, ip, port, thread_list): """execute command line on remote machine via ssh""" cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'' + cmd + '\'' # thread func to run the job def run(cmd): subprocess.check_call(cmd, shell = True) thread = Thread(target = run, args=(cmd,)) thread.setDaemon(True) thread.start() thread_list.append(thread) def get_remote_pids(ip, port, cmd_regex): """Get the process IDs that run the command in the remote machine. """ pids = [] curr_pid = os.getpid() # Here we want to get the python processes. We may get some ssh processes, so we should filter them out. ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'ps -aux | grep python | grep -v StrictHostKeyChecking\'' res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE) for p in res.stdout.decode('utf-8').split('\n'): l = p.split() if len(l) < 2: continue # We only get the processes that run the specified command. res = re.search(cmd_regex, p) if res is not None and int(l[1]) != curr_pid: pids.append(l[1]) pid_str = ','.join([str(pid) for pid in pids]) ps_cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'pgrep -P {}\''.format(pid_str) res = subprocess.run(ps_cmd, shell=True, stdout=subprocess.PIPE) pids1 = res.stdout.decode('utf-8').split('\n') all_pids = [] for pid in set(pids + pids1): if pid == '' or int(pid) == curr_pid: continue all_pids.append(int(pid)) all_pids.sort() return all_pids def get_all_remote_pids(hosts, ssh_port, udf_command): '''Get all remote processes. ''' remote_pids = {} for node_id, host in enumerate(hosts): ip, _ = host # When creating training processes in remote machines, we may insert some arguments # in the commands. We need to use regular expressions to match the modified command. cmds = udf_command.split() new_udf_command = ' .*'.join(cmds) pids = get_remote_pids(ip, ssh_port, new_udf_command) remote_pids[(ip, ssh_port)] = pids return remote_pids def submit_jobs(args, udf_command): """Submit distributed jobs (server and client processes) via ssh""" hosts = [] thread_list = [] server_count_per_machine = 0 # Get the IP addresses of the cluster. ip_config = args.workspace + '/' + args.ip_config with open(ip_config) as f: for line in f: result = line.strip().split() if len(result) == 2: ip = result[0] port = int(result[1]) hosts.append((ip, port)) elif len(result) == 1: ip = result[0] port = DEFAULT_PORT hosts.append((ip, port)) else: raise RuntimeError("Format error of ip_config.") server_count_per_machine = args.num_servers # Get partition info of the graph data part_config = args.workspace + '/' + args.part_config with open(part_config) as conf_f: part_metadata = json.load(conf_f) assert 'num_parts' in part_metadata, 'num_parts does not exist.' # The number of partitions must match the number of machines in the cluster. assert part_metadata['num_parts'] == len(hosts), \ 'The number of graph partitions has to match the number of machines in the cluster.' tot_num_clients = args.num_trainers * (1 + args.num_samplers) * len(hosts) # launch server tasks server_cmd = 'DGL_ROLE=server DGL_NUM_SAMPLER=' + str(args.num_samplers) server_cmd = server_cmd + ' ' + 'OMP_NUM_THREADS=' + str(args.num_server_threads) server_cmd = server_cmd + ' ' + 'DGL_NUM_CLIENT=' + str(tot_num_clients) server_cmd = server_cmd + ' ' + 'DGL_CONF_PATH=' + str(args.part_config) server_cmd = server_cmd + ' ' + 'DGL_IP_CONFIG=' + str(args.ip_config) server_cmd = server_cmd + ' ' + 'DGL_NUM_SERVER=' + str(args.num_servers) server_cmd = server_cmd + ' ' + 'DGL_GRAPH_FORMAT=' + str(args.graph_format) for i in range(len(hosts)*server_count_per_machine): ip, _ = hosts[int(i / server_count_per_machine)] cmd = server_cmd + ' ' + 'DGL_SERVER_ID=' + str(i) cmd = cmd + ' ' + udf_command cmd = 'cd ' + str(args.workspace) + '; ' + cmd execute_remote(cmd, ip, args.ssh_port, thread_list) # launch client tasks client_cmd = 'DGL_DIST_MODE="distributed" DGL_ROLE=client DGL_NUM_SAMPLER=' + str(args.num_samplers) client_cmd = client_cmd + ' ' + 'DGL_NUM_CLIENT=' + str(tot_num_clients) client_cmd = client_cmd + ' ' + 'DGL_CONF_PATH=' + str(args.part_config) client_cmd = client_cmd + ' ' + 'DGL_IP_CONFIG=' + str(args.ip_config) client_cmd = client_cmd + ' ' + 'DGL_NUM_SERVER=' + str(args.num_servers) if os.environ.get('OMP_NUM_THREADS') is not None: client_cmd = client_cmd + ' ' + 'OMP_NUM_THREADS=' + os.environ.get('OMP_NUM_THREADS') else: client_cmd = client_cmd + ' ' + 'OMP_NUM_THREADS=' + str(args.num_omp_threads) if os.environ.get('PYTHONPATH') is not None: client_cmd = client_cmd + ' ' + 'PYTHONPATH=' + os.environ.get('PYTHONPATH') client_cmd = client_cmd + ' ' + 'DGL_GRAPH_FORMAT=' + str(args.graph_format) torch_cmd = '-m torch.distributed.launch' torch_cmd = torch_cmd + ' ' + '--nproc_per_node=' + str(args.num_trainers) torch_cmd = torch_cmd + ' ' + '--nnodes=' + str(len(hosts)) torch_cmd = torch_cmd + ' ' + '--node_rank=' + str(0) torch_cmd = torch_cmd + ' ' + '--master_addr=' + str(hosts[0][0]) torch_cmd = torch_cmd + ' ' + '--master_port=' + str(1234) for node_id, host in enumerate(hosts): ip, _ = host new_torch_cmd = torch_cmd.replace('node_rank=0', 'node_rank='+str(node_id)) if 'python3' in udf_command: new_udf_command = udf_command.replace('python3', 'python3 ' + new_torch_cmd) elif 'python2' in udf_command: new_udf_command = udf_command.replace('python2', 'python2 ' + new_torch_cmd) else: new_udf_command = udf_command.replace('python', 'python ' + new_torch_cmd) cmd = client_cmd + ' ' + new_udf_command cmd = 'cd ' + str(args.workspace) + '; ' + cmd execute_remote(cmd, ip, args.ssh_port, thread_list) # Start a cleanup process dedicated for cleaning up remote training jobs. conn1,conn2 = multiprocessing.Pipe() func = partial(get_all_remote_pids, hosts, args.ssh_port, udf_command) process = multiprocessing.Process(target=cleanup_proc, args=(func, conn1)) process.start() def signal_handler(signal, frame): logging.info('Stop launcher') # We need to tell the cleanup process to kill remote training jobs. conn2.send('cleanup') sys.exit(0) signal.signal(signal.SIGINT, signal_handler) for thread in thread_list: thread.join() # The training processes complete. We should tell the cleanup process to exit. conn2.send('exit') process.join() def main(): parser = argparse.ArgumentParser(description='Launch a distributed job') parser.add_argument('--ssh_port', type=int, default=22, help='SSH Port.') parser.add_argument('--workspace', type=str, help='Path of user directory of distributed tasks. \ This is used to specify a destination location where \ the contents of current directory will be rsyncd') parser.add_argument('--num_trainers', type=int, help='The number of trainer processes per machine') parser.add_argument('--num_omp_threads', type=int, help='The number of OMP threads per trainer') parser.add_argument('--num_samplers', type=int, default=0, help='The number of sampler processes per trainer process') parser.add_argument('--num_servers', type=int, help='The number of server processes per machine') parser.add_argument('--part_config', type=str, help='The file (in workspace) of the partition config') parser.add_argument('--ip_config', type=str, help='The file (in workspace) of IP configuration for server processes') parser.add_argument('--num_server_threads', type=int, default=1, help='The number of OMP threads in the server process. \ It should be small if server processes and trainer processes run on \ the same machine. By default, it is 1.') parser.add_argument('--graph_format', type=str, default='csc', help='The format of the graph structure of each partition. \ The allowed formats are csr, csc and coo. A user can specify multiple \ formats, separated by ",". For example, the graph format is "csr,csc".') args, udf_command = parser.parse_known_args() assert len(udf_command) == 1, 'Please provide user command line.' assert args.num_trainers is not None and args.num_trainers > 0, \ '--num_trainers must be a positive number.' assert args.num_samplers is not None and args.num_samplers >= 0, \ '--num_samplers must be a non-negative number.' assert args.num_servers is not None and args.num_servers > 0, \ '--num_servers must be a positive number.' assert args.num_server_threads > 0, '--num_server_threads must be a positive number.' assert args.workspace is not None, 'A user has to specify a workspace with --workspace.' assert args.part_config is not None, \ 'A user has to specify a partition configuration file with --part_config.' assert args.ip_config is not None, \ 'A user has to specify an IP configuration file with --ip_config.' if args.num_omp_threads is None: # Here we assume all machines have the same number of CPU cores as the machine # where the launch script runs. args.num_omp_threads = max(multiprocessing.cpu_count() // 2 // args.num_trainers, 1) print('The number of OMP threads per trainer is set to', args.num_omp_threads) udf_command = str(udf_command[0]) if 'python' not in udf_command: raise RuntimeError("DGL launching script can only support Python executable file.") submit_jobs(args, udf_command) if __name__ == '__main__': fmt = '%(asctime)s %(levelname)s %(message)s' logging.basicConfig(format=fmt, level=logging.INFO) main()