import json import os from zipfile import ZipFile import dgl import numpy as np import tqdm from dgl.data.utils import download, get_download_dir from scipy.sparse import csr_matrix from torch.utils.data import Dataset class ShapeNet(object): def __init__(self, num_points=2048, normal_channel=True): self.num_points = num_points self.normal_channel = normal_channel SHAPENET_DOWNLOAD_URL = "https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip" download_path = get_download_dir() data_filename = ( "shapenetcore_partanno_segmentation_benchmark_v0_normal.zip" ) data_path = os.path.join( download_path, "shapenetcore_partanno_segmentation_benchmark_v0_normal", ) if not os.path.exists(data_path): local_path = os.path.join(download_path, data_filename) if not os.path.exists(local_path): download(SHAPENET_DOWNLOAD_URL, local_path, verify_ssl=False) with ZipFile(local_path) as z: z.extractall(path=download_path) synset_file = "synsetoffset2category.txt" with open(os.path.join(data_path, synset_file)) as f: synset = [t.split("\n")[0].split("\t") for t in f.readlines()] self.synset_dict = {} for syn in synset: self.synset_dict[syn[1]] = syn[0] self.seg_classes = { "Airplane": [0, 1, 2, 3], "Bag": [4, 5], "Cap": [6, 7], "Car": [8, 9, 10, 11], "Chair": [12, 13, 14, 15], "Earphone": [16, 17, 18], "Guitar": [19, 20, 21], "Knife": [22, 23], "Lamp": [24, 25, 26, 27], "Laptop": [28, 29], "Motorbike": [30, 31, 32, 33, 34, 35], "Mug": [36, 37], "Pistol": [38, 39, 40], "Rocket": [41, 42, 43], "Skateboard": [44, 45, 46], "Table": [47, 48, 49], } train_split_json = "shuffled_train_file_list.json" val_split_json = "shuffled_val_file_list.json" test_split_json = "shuffled_test_file_list.json" split_path = os.path.join(data_path, "train_test_split") with open(os.path.join(split_path, train_split_json)) as f: tmp = f.read() self.train_file_list = [ os.path.join(data_path, t.replace("shape_data/", "") + ".txt") for t in json.loads(tmp) ] with open(os.path.join(split_path, val_split_json)) as f: tmp = f.read() self.val_file_list = [ os.path.join(data_path, t.replace("shape_data/", "") + ".txt") for t in json.loads(tmp) ] with open(os.path.join(split_path, test_split_json)) as f: tmp = f.read() self.test_file_list = [ os.path.join(data_path, t.replace("shape_data/", "") + ".txt") for t in json.loads(tmp) ] def train(self): return ShapeNetDataset( self, "train", self.num_points, self.normal_channel ) def valid(self): return ShapeNetDataset( self, "valid", self.num_points, self.normal_channel ) def trainval(self): return ShapeNetDataset( self, "trainval", self.num_points, self.normal_channel ) def test(self): return ShapeNetDataset( self, "test", self.num_points, self.normal_channel ) class ShapeNetDataset(Dataset): def __init__(self, shapenet, mode, num_points, normal_channel=True): super(ShapeNetDataset, self).__init__() self.mode = mode self.num_points = num_points if not normal_channel: self.dim = 3 else: self.dim = 6 if mode == "train": self.file_list = shapenet.train_file_list elif mode == "valid": self.file_list = shapenet.val_file_list elif mode == "test": self.file_list = shapenet.test_file_list elif mode == "trainval": self.file_list = shapenet.train_file_list + shapenet.val_file_list else: raise "Not supported `mode`" data_list = [] label_list = [] category_list = [] print("Loading data from split " + self.mode) for fn in tqdm.tqdm(self.file_list, ascii=True): with open(fn) as f: data = np.array( [t.split("\n")[0].split(" ") for t in f.readlines()] ).astype(np.float) data_list.append(data[:, 0 : self.dim]) label_list.append(data[:, 6].astype(int)) category_list.append(shapenet.synset_dict[fn.split("/")[-2]]) self.data = data_list self.label = label_list self.category = category_list def translate(self, x, scale=(2 / 3, 3 / 2), shift=(-0.2, 0.2), size=3): xyz1 = np.random.uniform(low=scale[0], high=scale[1], size=[size]) xyz2 = np.random.uniform(low=shift[0], high=shift[1], size=[size]) x = np.add(np.multiply(x, xyz1), xyz2).astype("float32") return x def __len__(self): return len(self.data) def __getitem__(self, i): inds = np.random.choice( self.data[i].shape[0], self.num_points, replace=True ) x = self.data[i][inds, : self.dim] y = self.label[i][inds] cat = self.category[i] if self.mode == "train": x = self.translate(x, size=self.dim) x = x.astype(np.float) y = y.astype(int) return x, y, cat