""" .. _model-capsule: Capsule Network Tutorial =========================== **Author**: Jinjing Zhou, `Jake Zhao `_, Zheng Zhang, Jinyang Li It is perhaps a little surprising that some of the more classical models can also be described in terms of graphs, offering a different perspective. This tutorial describes how this can be done for the `capsule network `__. """ ####################################################################################### # Key ideas of Capsule # -------------------- # # The Capsule model offers two key ideas. # # **Richer representation** In classic convolutional networks, a scalar # value represents the activation of a given feature. By contrast, a # capsule outputs a vector. The vector's length represents the probability # of a feature being present. The vector's orientation represents the # various properties of the feature (such as pose, deformation, texture # etc.). # # |image0| # # **Dynamic routing** The output of a capsule is preferentially sent to # certain parents in the layer above based on how well the capsule's # prediction agrees with that of a parent. Such dynamic # "routing-by-agreement" generalizes the static routing of max-pooling. # # During training, routing is done iteratively; each iteration adjusts # "routing weights" between capsules based on their observed agreements, # in a manner similar to a k-means algorithm or `competitive # learning `__. # # In this tutorial, we show how capsule's dynamic routing algorithm can be # naturally expressed as a graph algorithm. Our implementation is adapted # from `Cedric # Chee `__, replacing # only the routing layer. Our version achieves similar speed and accuracy. # # Model Implementation # ---------------------- # Step 1: Setup and Graph Initialization # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # The connectivity between two layers of capsules form a directed, # bipartite graph, as shown in the Figure below. # # |image1| # # Each node :math:`j` is associated with feature :math:`v_j`, # representing its capsule’s output. Each edge is associated with # features :math:`b_{ij}` and :math:`\hat{u}_{j|i}`. :math:`b_{ij}` # determines routing weights, and :math:`\hat{u}_{j|i}` represents the # prediction of capsule :math:`i` for :math:`j`. # # Here's how we set up the graph and initialize node and edge features. import torch.nn as nn import torch as th import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt import dgl def init_graph(in_nodes, out_nodes, f_size): g = dgl.DGLGraph() all_nodes = in_nodes + out_nodes g.add_nodes(all_nodes) in_indx = list(range(in_nodes)) out_indx = list(range(in_nodes, in_nodes + out_nodes)) # add edges use edge broadcasting for u in in_indx: g.add_edges(u, out_indx) # init states g.ndata['v'] = th.zeros(all_nodes, f_size) g.edata['b'] = th.zeros(in_nodes * out_nodes, 1) return g ######################################################################################### # Step 2: Define message passing functions # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # This is the pseudo code for Capsule's routing algorithm as given in the # paper: # # |image2| # We implement pseudo code lines 4-7 in the class `DGLRoutingLayer` as the following steps: # # 1. Calculate coupling coefficients: # # - Coefficients are the softmax over all out-edge of in-capsules: # :math:`\textbf{c}_{i,j} = \text{softmax}(\textbf{b}_{i,j})`. # # 2. Calculate weighted sum over all in-capsules: # # - Output of a capsule is equal to the weighted sum of its in-capsules # :math:`s_j=\sum_i c_{ij}\hat{u}_{j|i}` # # 3. Squash outputs: # # - Squash the length of a capsule's output vector to range (0,1), so it can represent the probability (of some feature being present). # - :math:`v_j=\text{squash}(s_j)=\frac{||s_j||^2}{1+||s_j||^2}\frac{s_j}{||s_j||}` # # 4. Update weights by the amount of agreement: # # - The scalar product :math:`\hat{u}_{j|i}\cdot v_j` can be considered as how well capsule :math:`i` agrees with :math:`j`. It is used to update # :math:`b_{ij}=b_{ij}+\hat{u}_{j|i}\cdot v_j` class DGLRoutingLayer(nn.Module): def __init__(self, in_nodes, out_nodes, f_size): super(DGLRoutingLayer, self).__init__() self.g = init_graph(in_nodes, out_nodes, f_size) self.in_nodes = in_nodes self.out_nodes = out_nodes self.in_indx = list(range(in_nodes)) self.out_indx = list(range(in_nodes, in_nodes + out_nodes)) def forward(self, u_hat, routing_num=1): self.g.edata['u_hat'] = u_hat # step 2 (line 5) def cap_message(edges): return {'m': edges.data['c'] * edges.data['u_hat']} self.g.register_message_func(cap_message) def cap_reduce(nodes): return {'s': th.sum(nodes.mailbox['m'], dim=1)} self.g.register_reduce_func(cap_reduce) for r in range(routing_num): # step 1 (line 4): normalize over out edges edges_b = self.g.edata['b'].view(self.in_nodes, self.out_nodes) self.g.edata['c'] = F.softmax(edges_b, dim=1).view(-1, 1) # Execute step 1 & 2 self.g.update_all() # step 3 (line 6) self.g.nodes[self.out_indx].data['v'] = self.squash(self.g.nodes[self.out_indx].data['s'], dim=1) # step 4 (line 7) v = th.cat([self.g.nodes[self.out_indx].data['v']] * self.in_nodes, dim=0) self.g.edata['b'] = self.g.edata['b'] + (self.g.edata['u_hat'] * v).sum(dim=1, keepdim=True) @staticmethod def squash(s, dim=1): sq = th.sum(s ** 2, dim=dim, keepdim=True) s_norm = th.sqrt(sq) s = (sq / (1.0 + sq)) * (s / s_norm) return s ############################################################################################################ # Step 3: Testing # ~~~~~~~~~~~~~~~ # # Let's make a simple 20x10 capsule layer: in_nodes = 20 out_nodes = 10 f_size = 4 u_hat = th.randn(in_nodes * out_nodes, f_size) routing = DGLRoutingLayer(in_nodes, out_nodes, f_size) ############################################################################################################ # We can visualize a capsule network's behavior by monitoring the entropy # of coupling coefficients. They should start high and then drop, as the # weights gradually concentrate on fewer edges: entropy_list = [] dist_list = [] for i in range(10): routing(u_hat) dist_matrix = routing.g.edata['c'].view(in_nodes, out_nodes) entropy = (-dist_matrix * th.log(dist_matrix)).sum(dim=1) entropy_list.append(entropy.data.numpy()) dist_list.append(dist_matrix.data.numpy()) stds = np.std(entropy_list, axis=1) means = np.mean(entropy_list, axis=1) plt.errorbar(np.arange(len(entropy_list)), means, stds, marker='o') plt.ylabel("Entropy of Weight Distribution") plt.xlabel("Number of Routing") plt.xticks(np.arange(len(entropy_list))) plt.close() ############################################################################################################ # |image3| # # Alternatively, we can also watch the evolution of histograms: import seaborn as sns import matplotlib.animation as animation fig = plt.figure(dpi=150) fig.clf() ax = fig.subplots() def dist_animate(i): ax.cla() sns.distplot(dist_list[i].reshape(-1), kde=False, ax=ax) ax.set_xlabel("Weight Distribution Histogram") ax.set_title("Routing: %d" % (i)) ani = animation.FuncAnimation(fig, dist_animate, frames=len(entropy_list), interval=500) plt.close() ############################################################################################################ # |image4| # # Or monitor the how lower level capsules gradually attach to one of the # higher level ones: import networkx as nx from networkx.algorithms import bipartite g = routing.g.to_networkx() X, Y = bipartite.sets(g) height_in = 10 height_out = height_in * 0.8 height_in_y = np.linspace(0, height_in, in_nodes) height_out_y = np.linspace((height_in - height_out) / 2, height_out, out_nodes) pos = dict() fig2 = plt.figure(figsize=(8, 3), dpi=150) fig2.clf() ax = fig2.subplots() pos.update((n, (i, 1)) for i, n in zip(height_in_y, X)) # put nodes from X at x=1 pos.update((n, (i, 2)) for i, n in zip(height_out_y, Y)) # put nodes from Y at x=2 def weight_animate(i): ax.cla() ax.axis('off') ax.set_title("Routing: %d " % i) dm = dist_list[i] nx.draw_networkx_nodes(g, pos, nodelist=range(in_nodes), node_color='r', node_size=100, ax=ax) nx.draw_networkx_nodes(g, pos, nodelist=range(in_nodes, in_nodes + out_nodes), node_color='b', node_size=100, ax=ax) for edge in g.edges(): nx.draw_networkx_edges(g, pos, edgelist=[edge], width=dm[edge[0], edge[1] - in_nodes] * 1.5, ax=ax) ani2 = animation.FuncAnimation(fig2, weight_animate, frames=len(dist_list), interval=500) plt.close() ############################################################################################################ # |image5| # # The full code of this visualization is provided at # `link `__; the complete # code that trains on MNIST is at `link `__. # # .. |image0| image:: https://i.imgur.com/55Ovkdh.png # .. |image1| image:: https://i.imgur.com/9tc6GLl.png # .. |image2| image:: https://i.imgur.com/mv1W9Rv.png # .. |image3| image:: https://i.imgur.com/dMvu7p3.png # .. |image4| image:: https://github.com/VoVAllen/DGL_Capsule/raw/master/routing_dist.gif # .. |image5| image:: https://github.com/VoVAllen/DGL_Capsule/raw/master/routing_vis.gif