"""Best hyperparameters found.""" import torch MWE_GCN_proteins = { "num_ew_channels": 8, "num_epochs": 2000, "in_feats": 1, "hidden_feats": 10, "out_feats": 112, "n_layers": 3, "lr": 2e-2, "weight_decay": 0, "patience": 1000, "dropout": 0.2, "aggr_mode": "sum", ## 'sum' or 'concat' for the aggregation across channels "ewnorm": "both", } MWE_DGCN_proteins = { "num_ew_channels": 8, "num_epochs": 2000, "in_feats": 1, "hidden_feats": 10, "out_feats": 112, "n_layers": 2, "lr": 1e-2, "weight_decay": 0, "patience": 300, "dropout": 0.5, "aggr_mode": "sum", "residual": True, "ewnorm": "none", } def get_exp_configure(args): if args["model"] == "MWE-GCN": return MWE_GCN_proteins elif args["model"] == "MWE-DGCN": return MWE_DGCN_proteins