import torch import torch.nn as nn import torch.nn.functional as F import dgl.function as fn class PGNN_layer(nn.Module): def __init__(self, input_dim, output_dim): super(PGNN_layer, self).__init__() self.input_dim = input_dim self.linear_hidden_u = nn.Linear(input_dim, output_dim) self.linear_hidden_v = nn.Linear(input_dim, output_dim) self.linear_out_position = nn.Linear(output_dim, 1) self.act = nn.ReLU() def forward(self, graph, feature, anchor_eid, dists_max): with graph.local_scope(): u_feat = self.linear_hidden_u(feature) v_feat = self.linear_hidden_v(feature) graph.srcdata.update({"u_feat": u_feat}) graph.dstdata.update({"v_feat": v_feat}) graph.apply_edges(fn.u_mul_e("u_feat", "sp_dist", "u_message")) graph.apply_edges(fn.v_add_e("v_feat", "u_message", "message")) messages = torch.index_select( graph.edata["message"], 0, torch.LongTensor(anchor_eid).to(feature.device), ) messages = messages.reshape( dists_max.shape[0], dists_max.shape[1], messages.shape[-1] ) messages = self.act(messages) # n*m*d out_position = self.linear_out_position(messages).squeeze( -1 ) # n*m_out out_structure = torch.mean(messages, dim=1) # n*d return out_position, out_structure class PGNN(nn.Module): def __init__(self, input_dim, feature_dim=32, dropout=0.5): super(PGNN, self).__init__() self.dropout = nn.Dropout(dropout) self.linear_pre = nn.Linear(input_dim, feature_dim) self.conv_first = PGNN_layer(feature_dim, feature_dim) self.conv_out = PGNN_layer(feature_dim, feature_dim) def forward(self, data): x = data["graph"].ndata["feat"] graph = data["graph"] x = self.linear_pre(x) x_position, x = self.conv_first( graph, x, data["anchor_eid"], data["dists_max"] ) x = self.dropout(x) x_position, x = self.conv_out( graph, x, data["anchor_eid"], data["dists_max"] ) x_position = F.normalize(x_position, p=2, dim=-1) return x_position