name: "dimenet++" model: emb_size: 128 out_emb_size: 256 int_emb_size: 64 basis_emb_size: 8 num_blocks: 4 num_spherical: 7 num_radial: 6 envelope_exponent: 5 cutoff: 5.0 extensive: True num_before_skip: 1 num_after_skip: 2 num_dense_output: 3 # ['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv'] targets: ['mu'] train: num_train: 110000 num_valid: 10000 data_seed: 42 lr: 0.001 weight_decay: 0.0001 ema_decay: 0 batch_size: 100 epochs: 300 early_stopping: 20 num_workers: 18 gpu: 0 interval: 50 step_size: 100 gamma: 0.3 pretrain: flag: False path: 'pretrained/converted/'