# Stochastic Training for Graph Convolutional Networks Using Distributed Sampler * Paper: [Control Variate](https://arxiv.org/abs/1710.10568) * Paper: [Skip Connection](https://arxiv.org/abs/1809.05343) * Author's code: [https://github.com/thu-ml/stochastic_gcn](https://github.com/thu-ml/stochastic_gcn) Dependencies ------------ - PyTorch 0.4.1+ - requests ``bash pip install torch requests `` ### Usage Assume that the user has already launched two instances (`instance_0` & `instance_1`) on AWS EC2, and also these two instances have the correct authority to access each other by TCP/IP protocol. Now we can treat `instance_0` as `Trainer` and `instance_1` as `Sampler`. Then, the user can start the trainer process and sampler process on these two instances separately. We have already provided a set of scripts to start the trainer and sampler process and users just need to change the `--ip` to their own IP address. For the sampler instance_0, users can change the `--num-sampler` option to set the number of the sampler. The `sampler.py` script will start `--num-sampler` processes concurrently to maximalize the system utilization. Users can also launch many samplers in parallel across a set of machines. For example, if we have `10` sampler instance and for each instance, we set the `--num-sampler` to `2`, we need to set the `--num-sampler` to `20`. ### Neighbor Sampling & Skip Connection #### cora Test accuracy ~83% with --num-neighbors 2, ~84% by training on the full graph Trainer side: ``` DGLBACKEND=pytorch python3 gcn_ns_sc_train.py --dataset cora --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` Sampler side: ``` DGLBACKEND=pytorch python3 sampler.py --model gcn_ns --dataset cora --self-loop --num-neighbors 2 --batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` #### citeseer Test accuracy ~69% with --num-neighbors 2, ~70% by training on the full graph Trainer side: ``` DGLBACKEND=pytorch python3 gcn_ns_sc_train.py --dataset citeseer --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` Sampler side: ``` DGLBACKEND=pytorch python3 sampler.py --model gcn_ns --dataset citeseer --self-loop --num-neighbors 2 --batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` #### pubmed Test accuracy ~76% with --num-neighbors 3, ~77% by training on the full graph Trainer side: ``` DGLBACKEND=pytorch python3 gcn_ns_sc_train.py --dataset pubmed --self-loop --num-neighbors 3 --batch-size 1000000 --test-batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` Sampler side: ``` DGLBACKEND=pytorch python3 sampler.py --model gcn_ns --dataset pubmed --self-loop --num-neighbors 3 --batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` ### Control Variate & Skip Connection #### cora Test accuracy ~84% with --num-neighbors 1, ~84% by training on the full graph Trainer side: ``` DGLBACKEND=pytorch python3 gcn_cv_sc_train.py --dataset cora --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` Sampler side: ``` DGLBACKEND=pytorch python3 sampler.py --model gcn_cv --dataset cora --self-loop --num-neighbors 1 --batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` #### citeseer Test accuracy ~69% with --num-neighbors 1, ~70% by training on the full graph Trainer side: ``` DGLBACKEND=pytorch python3 gcn_cv_sc_train.py --dataset citeseer --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` Sampler side: ``` DGLBACKEND=pytorch python3 sampler.py --model gcn_cv --dataset citeseer --self-loop --num-neighbors 1 --batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` #### pubmed Test accuracy ~77% with --num-neighbors 1, ~77% by training on the full graph Trainer side: ``` DGLBACKEND=pytorch python3 gcn_cv_sc_train.py --dataset pubmed --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ``` Sampler side: ``` DGLBACKEND=pytorch python3 sampler.py --model gcn_cv --dataset pubmed --self-loop --num-neighbors 1 --batch-size 1000000 --ip 127.0.0.1:50051 --num-sampler 1 ```