/*! * Copyright (c) 2020 by Contributors * \file array/cuda/sddmm.cuh * \brief SDDMM CUDA kernel function header. */ #ifndef DGL_ARRAY_CUDA_SDDMM_CUH_ #define DGL_ARRAY_CUDA_SDDMM_CUH_ #include #include "macro.cuh" #include "atomic.cuh" #include "functor.cuh" #include "../../cuda_utils.h" #include "../../runtime/cuda/cuda_common.h" namespace dgl { using namespace cuda; namespace aten { namespace cuda { /*! * \brief CUDA kernel of g-SDDMM on Coo format. * \note it uses edge parallel strategy, different threadblocks (on y-axis) * is responsible for the computation on different edges. Threadblocks * on the x-axis are responsible for the computation on different positions * in feature dimension. */ template __global__ void SDDMMCooKernel( const DType *ufeat, const DType *vfeat, DType *out, const Idx *row, const Idx *col, const Idx* edge_map, int64_t N, int64_t M, int64_t E, int64_t reduce_size, const int64_t *ubcast_off, const int64_t *vbcast_off, int64_t ufeat_len, int64_t vfeat_len, int64_t out_len) { // SDDMM with COO. Idx ty = blockIdx.y * blockDim.y + threadIdx.y; const Idx stride_y = blockDim.y * gridDim.y; while (ty < E) { const Idx src = _ldg(row + ty); const Idx dst = _ldg(col + ty); const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty; const DType* lhsoff = BinaryOp::use_lhs ? (ufeat + src * ufeat_len): nullptr; const DType* rhsoff = BinaryOp::use_rhs ? (vfeat + dst * vfeat_len): nullptr; DType* outoff = out + eid * out_len; int tx = blockIdx.x * blockDim.x + threadIdx.x; const int stride_x = blockDim.x * gridDim.x; while (tx < out_len) { const Idx lhs_add = UseBcast ? ubcast_off[tx] : tx; const Idx rhs_add = UseBcast ? vbcast_off[tx] : tx; DType val = BinaryOp::Call( lhsoff + lhs_add * reduce_size, rhsoff + rhs_add * reduce_size, reduce_size); outoff[tx] = val; tx += stride_x; } ty += stride_y; } } // Binary search the row_offsets to find the source node of the edge id. template __device__ __forceinline__ Idx BinarySearchSrc(const Idx *array, Idx length, Idx eid) { Idx lo = 0, hi = length - 1; while (lo < hi) { Idx mid = (lo + hi) >> 1; if (_ldg(array + mid) <= eid) { lo = mid + 1; } else { hi = mid; } } // INVARIANT: lo == hi if (_ldg(array + hi) == eid) { return hi; } else { return hi - 1; } } /*! * \brief CUDA kernel of g-SDDMM on Csr format. * \note it uses edge parallel strategy, different threadblocks (on y-axis) * is responsible for the computation on different edges. Threadblocks * on the x-axis are responsible for the computation on different positions * in feature dimension. * To efficiently find the source node idx and destination node index of an * given edge on Csr format, it uses binary search (time complexity O(log N)). */ template __global__ void SDDMMCsrKernel( const DType *ufeat, const DType *vfeat, DType *out, const Idx *indptr, const Idx *indices, const Idx* edge_map, int64_t N, int64_t M, int64_t E, int64_t reduce_size, int64_t *ubcast_off, int64_t *vbcast_off, int64_t ufeat_len, int64_t vfeat_len, int64_t out_len) { // SDDMM with Csr. Idx ty = blockIdx.y * blockDim.y + threadIdx.y; const Idx stride_y = blockDim.y * gridDim.y; while (ty < E) { const Idx src = BinarySearchSrc(indptr, N + 1, ty); const Idx dst = _ldg(indices + ty); const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty; int64_t tx = blockIdx.x * blockDim.x + threadIdx.x; const int64_t stride_x = blockDim.x * gridDim.x; const DType* lhsoff = BinaryOp::use_lhs ? (ufeat + src * ufeat_len): nullptr; const DType* rhsoff = BinaryOp::use_rhs ? (vfeat + dst * vfeat_len): nullptr; DType* outoff = out + eid * out_len; while (tx < out_len) { const Idx lhs_add = UseBcast ? ubcast_off[tx] : tx; const Idx rhs_add = UseBcast ? vbcast_off[tx] : tx; DType val = BinaryOp::Call( lhsoff + lhs_add * reduce_size, rhsoff + rhs_add * reduce_size, reduce_size); outoff[tx] = val; tx += stride_x; } ty += stride_y; } } /*! * \brief CUDA implementation of g-SDDMM on Coo format. * \param bcast Broadcast information. * \param coo The Coo matrix. * \param ufeat The feature on source nodes. * \param vfeat The feature on destination nodes. * \param out The result feature on edges. */ template void SDDMMCoo( const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray vfeat, NDArray out) { const Idx *row = coo.row.Ptr(); const Idx *col = coo.col.Ptr(); const Idx *edge_map = coo.data.Ptr(); const DType *ufeat_data = ufeat.Ptr(); const DType *vfeat_data = vfeat.Ptr(); DType *out_data = out.Ptr(); auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal(); int64_t *ubcast_off = nullptr, *vbcast_off = nullptr; int64_t len = bcast.out_len, lhs_len = bcast.lhs_len, rhs_len = bcast.rhs_len; int64_t reduce_dim = bcast.reduce_size; const int64_t nnz = coo.row->shape[0]; const int ntx = FindNumThreads(len); const int nty = CUDA_MAX_NUM_THREADS / ntx; const int nbx = (len + ntx - 1) / ntx; const int nby = FindNumBlocks<'y'>((nnz + nty - 1) / nty); //LOG(INFO) << "nblks=(" << nbx << ", " << nby << ") nthrs=(" << ntx << ", " << nty << ")"; const dim3 nblks(nbx, nby); const dim3 nthrs(ntx, nty); const bool use_idx = !IsNullArray(coo.data); BCAST_IDX_CTX_SWITCH(bcast, use_idx, ufeat->ctx, ubcast_off, vbcast_off, { SDDMMCooKernel <<stream>>>( ufeat_data, vfeat_data, out_data, row, col, edge_map, coo.num_rows, coo.num_cols, nnz, reduce_dim, ubcast_off, vbcast_off, lhs_len, rhs_len, len ); }); } /*! * \brief CUDA implementation of g-SDDMM on Csr format. * \param bcast Broadcast information. * \param csr The Csr matrix. * \param ufeat The feature on source nodes. * \param vfeat The feature on destination nodes. * \param out The result feature on edges. */ template void SDDMMCsr( const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray vfeat, NDArray out) { const Idx *indptr = csr.indptr.Ptr(); const Idx *indices = csr.indices.Ptr(); const Idx *edge_map = csr.data.Ptr(); const DType *ufeat_data = ufeat.Ptr(); const DType *vfeat_data = vfeat.Ptr(); DType *out_data = out.Ptr(); auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal(); int64_t N = csr.num_rows, M = csr.num_cols, E = csr.indices->shape[0]; int64_t *ubcast_off = nullptr, *vbcast_off = nullptr; int64_t len = bcast.out_len, lhs_len = bcast.lhs_len, rhs_len = bcast.rhs_len; int64_t reduce_dim = bcast.reduce_size; const int ntx = FindNumThreads(len); const int nty = CUDA_MAX_NUM_THREADS / ntx; const int nbx = (len + ntx - 1) / ntx; const int nby = FindNumBlocks<'y'>((E + nty - 1) / nty); const dim3 nblks(nbx, nby); const dim3 nthrs(ntx, nty); const bool use_idx = !IsNullArray(csr.data); BCAST_IDX_CTX_SWITCH(bcast, use_idx, ufeat->ctx, ubcast_off, vbcast_off, { SDDMMCsrKernel <<stream>>>( ufeat_data, vfeat_data, out_data, indptr, indices, edge_map, N, M, E, reduce_dim, ubcast_off, vbcast_off, lhs_len, rhs_len, len ); }); } } // namespace cuda } // namespace aten } // namespace dgl #endif