"""Training GCN model on citation graphs.""" import argparse, time import numpy as np import mxnet as mx from mxnet import gluon from dgl import DGLGraph from dgl.data import register_data_args, load_data from gcn import GCN #from gcn_mp import GCN #from gcn_spmv import GCN def evaluate(model, features, labels, mask): pred = model(features).argmax(axis=1) accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar() return accuracy.asscalar() def main(args): # load and preprocess dataset data = load_data(args) features = mx.nd.array(data.features) labels = mx.nd.array(data.labels) train_mask = mx.nd.array(data.train_mask) val_mask = mx.nd.array(data.val_mask) test_mask = mx.nd.array(data.test_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print("""----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % (n_edges, n_classes, train_mask.sum().asscalar(), val_mask.sum().asscalar(), test_mask.sum().asscalar())) if args.gpu < 0: cuda = False ctx = mx.cpu(0) else: cuda = True ctx = mx.gpu(args.gpu) features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) train_mask = train_mask.as_in_context(ctx) val_mask = val_mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) # create GCN model g = data.graph if args.self_loop: g.remove_edges_from(g.selfloop_edges()) g.add_edges_from(zip(g.nodes(), g.nodes())) g = DGLGraph(g) # normalization degs = g.in_degrees().astype('float32') norm = mx.nd.power(degs, -0.5) if cuda: norm = norm.as_in_context(ctx) g.ndata['norm'] = mx.nd.expand_dims(norm, 1) model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, mx.nd.relu, args.dropout) model.initialize(ctx=ctx) n_train_samples = train_mask.sum().asscalar() loss_fcn = gluon.loss.SoftmaxCELoss() # use optimizer print(model.collect_params()) trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr, 'wd': args.weight_decay}) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): pred = model(features) loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1)) loss = loss.sum() / n_train_samples loss.backward() trainer.step(batch_size=1) if epoch >= 3: loss.asscalar() dur.append(time.time() - t0) acc = evaluate(model, features, labels, val_mask) print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}". format( epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000)) # test set accuracy acc = evaluate(model, features, labels, test_mask) print("Test accuracy {:.2%}".format(acc)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN') register_data_args(parser) parser.add_argument("--dropout", type=float, default=0.5, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=3e-2, help="learning rate") parser.add_argument("--n-epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") parser.add_argument("--weight-decay", type=float, default=5e-4, help="Weight for L2 loss") parser.add_argument("--self-loop", action='store_true', help="graph self-loop (default=False)") parser.set_defaults(self_loop=False) args = parser.parse_args() print(args) main(args)