import os import scipy as sp import dgl import numpy as np import dgl.backend as F import dgl backend = os.environ.get('DGLBACKEND') if backend.lower() == 'mxnet': from models.mxnet.score_fun import * else: from models.pytorch.score_fun import * from models.general_models import KEModel from dataloader.sampler import create_neg_subgraph def generate_rand_graph(n, func_name): arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64) g = dgl.DGLGraph(arr, readonly=True) num_rels = 10 entity_emb = F.uniform((g.number_of_nodes(), 10), F.float32, F.cpu(), 0, 1) rel_emb = F.uniform((num_rels, 10), F.float32, F.cpu(), 0, 1) if func_name == 'RESCAL': rel_emb = F.uniform((num_rels, 10*10), F.float32, F.cpu(), 0, 1) g.ndata['id'] = F.arange(0, g.number_of_nodes()) rel_ids = np.random.randint(0, num_rels, g.number_of_edges(), dtype=np.int64) g.edata['id'] = F.tensor(rel_ids, F.int64) return g, entity_emb, rel_emb ke_score_funcs = {'TransE': TransEScore(12.0), 'DistMult': DistMultScore(), 'ComplEx': ComplExScore(), 'RESCAL': RESCALScore(10, 10)} class BaseKEModel: def __init__(self, score_func, entity_emb, rel_emb): self.score_func = score_func self.head_neg_score = self.score_func.create_neg(True) self.tail_neg_score = self.score_func.create_neg(False) self.entity_emb = entity_emb self.rel_emb = rel_emb def predict_score(self, g): g.ndata['emb'] = self.entity_emb[g.ndata['id']] g.edata['emb'] = self.rel_emb[g.edata['id']] self.score_func(g) return g.edata['score'] def predict_neg_score(self, pos_g, neg_g): pos_g.ndata['emb'] = self.entity_emb[pos_g.ndata['id']] pos_g.edata['emb'] = self.rel_emb[pos_g.edata['id']] neg_g.ndata['emb'] = self.entity_emb[neg_g.ndata['id']] neg_g.edata['emb'] = self.rel_emb[neg_g.edata['id']] num_chunks = neg_g.num_chunks chunk_size = neg_g.chunk_size neg_sample_size = neg_g.neg_sample_size if neg_g.neg_head: neg_head_ids = neg_g.ndata['id'][neg_g.head_nid] neg_head = self.entity_emb[neg_head_ids] _, tail_ids = pos_g.all_edges(order='eid') tail = pos_g.ndata['emb'][tail_ids] rel = pos_g.edata['emb'] neg_score = self.head_neg_score(neg_head, rel, tail, num_chunks, chunk_size, neg_sample_size) else: neg_tail_ids = neg_g.ndata['id'][neg_g.tail_nid] neg_tail = self.entity_emb[neg_tail_ids] head_ids, _ = pos_g.all_edges(order='eid') head = pos_g.ndata['emb'][head_ids] rel = pos_g.edata['emb'] neg_score = self.tail_neg_score(head, rel, neg_tail, num_chunks, chunk_size, neg_sample_size) return neg_score def check_score_func(func_name): batch_size = 10 neg_sample_size = 10 g, entity_emb, rel_emb = generate_rand_graph(100, func_name) hidden_dim = entity_emb.shape[1] ke_score_func = ke_score_funcs[func_name] model = BaseKEModel(ke_score_func, entity_emb, rel_emb) EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') sampler = EdgeSampler(g, batch_size=batch_size, neg_sample_size=neg_sample_size, negative_mode='PBG-head', num_workers=1, shuffle=False, exclude_positive=False, return_false_neg=False) for pos_g, neg_g in sampler: neg_g = create_neg_subgraph(pos_g, neg_g, True, True, g.number_of_nodes()) pos_g.copy_from_parent() neg_g.copy_from_parent() score1 = F.reshape(model.predict_score(neg_g), (batch_size, -1)) score2 = model.predict_neg_score(pos_g, neg_g) score2 = F.reshape(score2, (batch_size, -1)) np.testing.assert_allclose(F.asnumpy(score1), F.asnumpy(score2), rtol=1e-5, atol=1e-5) def test_score_func(): for key in ke_score_funcs: check_score_func(key) if __name__ == '__main__': test_score_func()