Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
edb97877
Unverified
Commit
edb97877
authored
Nov 30, 2020
by
Mufei Li
Committed by
GitHub
Nov 30, 2020
Browse files
[Doc, UG, Tutorial] Misc Fix (#2376)
* Update * Update * Update * Update * Update
parent
6b02babb
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
12 additions
and
12 deletions
+12
-12
docs/source/guide/training-edge.rst
docs/source/guide/training-edge.rst
+1
-2
python/dgl/convert.py
python/dgl/convert.py
+2
-0
tutorials/basics/1_first.py
tutorials/basics/1_first.py
+1
-1
tutorials/models/1_gnn/1_gcn.py
tutorials/models/1_gnn/1_gcn.py
+8
-9
No files found.
docs/source/guide/training-edge.rst
View file @
edb97877
...
...
@@ -3,8 +3,7 @@
5.2
Edge
Classification
/
Regression
---------------------------------------------
Sometimes
you
wish
to
predict
the
attributes
on
the
edges
of
the
graph
,
or
even
whether
an
edge
exists
or
not
between
two
given
nodes
.
In
that
Sometimes
you
wish
to
predict
the
attributes
on
the
edges
of
the
graph
.
In
that
case
,
you
would
like
to
have
an
*
edge
classification
/
regression
*
model
.
Here
we
generate
a
random
graph
for
edge
prediction
as
a
demonstration
.
...
...
python/dgl/convert.py
View file @
edb97877
...
...
@@ -259,6 +259,8 @@ def heterograph(data_dict,
formats and chooses the most efficient one depending on the computation invoked.
If memory usage becomes an issue in the case of large graphs, use
:func:`dgl.DGLGraph.formats` to restrict the allowed formats.
4. DGL internally decides a deterministic order for the same set of node types and canonical
edge types, which does not necessarily follow the order in :attr:`data_dict`.
Examples
--------
...
...
tutorials/basics/1_first.py
View file @
edb97877
...
...
@@ -64,7 +64,7 @@ def build_karate_club_graph():
u
=
np
.
concatenate
([
src
,
dst
])
v
=
np
.
concatenate
([
dst
,
src
])
# Construct a DGLGraph
return
dgl
.
DGLG
raph
((
u
,
v
))
return
dgl
.
g
raph
((
u
,
v
))
###############################################################################
# Print out the number of nodes and edges in our newly constructed graph:
...
...
tutorials/models/1_gnn/1_gcn.py
View file @
edb97877
...
...
@@ -49,7 +49,7 @@ import torch.nn as nn
import
torch.nn.functional
as
F
from
dgl
import
DGLGraph
gcn_msg
=
fn
.
copy_
src
(
src
=
'h'
,
out
=
'm'
)
gcn_msg
=
fn
.
copy_
u
(
u
=
'h'
,
out
=
'm'
)
gcn_reduce
=
fn
.
sum
(
msg
=
'm'
,
out
=
'h'
)
###############################################################################
...
...
@@ -95,15 +95,14 @@ print(net)
###############################################################################
# We load the cora dataset using DGL's built-in data module.
from
dgl.data
import
citation_graph
as
citegrh
import
networkx
as
nx
from
dgl.data
import
CoraGraphDataset
def
load_cora_data
():
data
=
citegrh
.
load_cora
()
features
=
th
.
FloatTensor
(
data
.
features
)
labels
=
th
.
LongTensor
(
data
.
labels
)
train_mask
=
th
.
BoolTensor
(
data
.
train_mask
)
t
est
_mask
=
th
.
BoolTensor
(
data
.
test
_mask
)
g
=
DGLGraph
(
data
.
graph
)
data
set
=
CoraGraphDataset
()
g
=
dataset
[
0
]
features
=
g
.
ndata
[
'feat'
]
labels
=
g
.
ndata
[
'label'
]
t
rain
_mask
=
g
.
ndata
[
'train
_mask
'
]
test_mask
=
g
.
ndata
[
'test_mask'
]
return
g
,
features
,
labels
,
train_mask
,
test_mask
###############################################################################
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment