Commit c6067cc4 authored by lisj's avatar lisj
Browse files

适配dtk23.04-km

parent a99e1077
......@@ -77,3 +77,5 @@ hip结构体hipPointerAttribute_t适配
src\array\cuda\gather_mm.cu:103
src\array\cuda\gather_mm.cu:164
```
3. 单元测试及python相关
修改`np.int``np.float``np.asscalar``int``float``np.ndarray.item`,并将`setup.py``numpy`依赖版本提高至`1.20.0`,统一dtype相关类型的代码,以避免单元测试和使用中问题
\ No newline at end of file
......@@ -287,9 +287,9 @@ class BGNNPredictor:
# initialize for early stopping and metrics
if metric_name in ['r2', 'accuracy']:
best_metric = [np.float('-inf')] * 3 # for train/val/test
best_metric = [float('-inf')] * 3 # for train/val/test
else:
best_metric = [np.float('inf')] * 3 # for train/val/test
best_metric = [float('inf')] * 3 # for train/val/test
best_val_epoch = 0
epochs_since_last_best_metric = 0
......
......@@ -56,7 +56,7 @@ def main(args):
labels = labels.data.numpy().tolist()
dev_preds += preds
dev_labels += labels
acc = np.equal(dev_labels, dev_preds).astype(np.float).tolist()
acc = np.equal(dev_labels, dev_preds).astype(float).tolist()
acc = sum(acc) / len(acc)
print(f"Epoch {epoch}, Dev acc {acc}")
......@@ -76,7 +76,7 @@ def main(args):
labels = labels.data.numpy().tolist()
test_preds += preds
test_labels += labels
acc = np.equal(test_labels, test_preds).astype(np.float).tolist()
acc = np.equal(test_labels, test_preds).astype(float).tolist()
acc = sum(acc) / len(acc)
test_acc_list.append(acc)
......
......@@ -53,7 +53,7 @@ def main(args):
labels = labels.data.numpy().tolist()
dev_preds += preds
dev_labels += labels
acc = np.equal(dev_labels, dev_preds).astype(np.float).tolist()
acc = np.equal(dev_labels, dev_preds).astype(float).tolist()
acc = sum(acc) / len(acc)
print(f"Epoch {epoch}, Dev acc {acc}")
......@@ -73,7 +73,7 @@ def main(args):
labels = labels.data.numpy().tolist()
test_preds += preds
test_labels += labels
acc = np.equal(test_labels, test_preds).astype(np.float).tolist()
acc = np.equal(test_labels, test_preds).astype(float).tolist()
acc = sum(acc) / len(acc)
test_acc_list.append(acc)
......
......@@ -36,7 +36,7 @@ def evaluate(gt_labels, pred_labels, metric='pairwise'):
with Timer('evaluate with {}{}{}'.format(TextColors.FATAL, metric,
TextColors.ENDC)):
result = metric_func(gt_labels, pred_labels)
if isinstance(result, np.float):
if isinstance(result, float):
print('{}{}: {:.4f}{}'.format(TextColors.OKGREEN, metric, result,
TextColors.ENDC))
else:
......
......@@ -53,7 +53,7 @@ def process(dataset):
with open('{0}_node_attributes.txt'.format(prefix), 'r') as f:
for line in f:
node_attrs.append(
np.array([float(attr) for attr in re.split("[,\s]+", line.strip("\s\n")) if attr], dtype=np.float)
np.array([float(attr) for attr in re.split("[,\s]+", line.strip("\s\n")) if attr], dtype=float)
)
else:
print('No node attributes')
......@@ -113,7 +113,7 @@ def process(dataset):
f = np.zeros(max_deg + 1)
f[graph.degree[u[0]]] = 1.0
if 'label' in u[1]:
f = np.concatenate((np.array(u[1]['label'], dtype=np.float), f))
f = np.concatenate((np.array(u[1]['label'], dtype=float), f))
graph.nodes[u[0]]['feat'] = f
return graphs, pprs
......
......@@ -188,7 +188,7 @@ class DeepwalkDataset:
node_degree = self.G.out_degrees(self.valid_seeds).numpy()
node_degree = np.power(node_degree, 0.75)
node_degree /= np.sum(node_degree)
node_degree = np.array(node_degree * 1e8, dtype=np.int)
node_degree = np.array(node_degree * 1e8, dtype=int)
self.neg_table = []
for idx, node in enumerate(self.valid_seeds):
......
......@@ -184,7 +184,7 @@ class LineDataset:
node_degree = self.G.out_degrees(self.valid_nodes).numpy()
node_degree = np.power(node_degree, 0.75)
node_degree /= np.sum(node_degree)
node_degree = np.array(node_degree * 1e8, dtype=np.int)
node_degree = np.array(node_degree * 1e8, dtype=int)
self.neg_table = []
for idx, node in enumerate(self.valid_nodes):
......
......@@ -98,9 +98,9 @@ class ShapeNetDataset(Dataset):
print('Loading data from split ' + self.mode)
for fn in tqdm.tqdm(self.file_list, ascii=True):
with open(fn) as f:
data = np.array([t.split('\n')[0].split(' ') for t in f.readlines()]).astype(np.float)
data = np.array([t.split('\n')[0].split(' ') for t in f.readlines()]).astype(float)
data_list.append(data[:, 0:self.dim])
label_list.append(data[:, 6].astype(np.int))
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split('/')[-2]])
self.data = data_list
self.label = label_list
......@@ -122,6 +122,6 @@ class ShapeNetDataset(Dataset):
cat = self.category[i]
if self.mode == 'train':
x = self.translate(x, size=self.dim)
x = x.astype(np.float)
y = y.astype(np.int)
x = x.astype(float)
y = y.astype(int)
return x, y, cat
......@@ -98,9 +98,9 @@ class ShapeNetDataset(Dataset):
print('Loading data from split ' + self.mode)
for fn in tqdm.tqdm(self.file_list, ascii=True):
with open(fn) as f:
data = np.array([t.split('\n')[0].split(' ') for t in f.readlines()]).astype(np.float)
data = np.array([t.split('\n')[0].split(' ') for t in f.readlines()]).astype(float)
data_list.append(data[:, 0:self.dim])
label_list.append(data[:, 6].astype(np.int))
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split('/')[-2]])
self.data = data_list
self.label = label_list
......@@ -122,6 +122,6 @@ class ShapeNetDataset(Dataset):
cat = self.category[i]
if self.mode == 'train':
x = self.translate(x, size=self.dim)
x = x.astype(np.float)
y = y.astype(np.int)
x = x.astype(float)
y = y.astype(int)
return x, y, cat
......@@ -98,9 +98,9 @@ class ShapeNetDataset(Dataset):
print('Loading data from split ' + self.mode)
for fn in tqdm.tqdm(self.file_list, ascii=True):
with open(fn) as f:
data = np.array([t.split('\n')[0].split(' ') for t in f.readlines()]).astype(np.float)
data = np.array([t.split('\n')[0].split(' ') for t in f.readlines()]).astype(float)
data_list.append(data[:, 0:self.dim])
label_list.append(data[:, 6].astype(np.int))
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split('/')[-2]])
self.data = data_list
self.label = label_list
......@@ -122,6 +122,6 @@ class ShapeNetDataset(Dataset):
cat = self.category[i]
if self.mode == 'train':
x = self.translate(x, size=self.dim)
x = x.astype(np.float)
y = y.astype(np.int)
x = x.astype(float)
y = y.astype(int)
return x, y, cat
......@@ -417,7 +417,7 @@ def _load_data(dataset_str='aifb', dataset_path=None):
# sort indices by destination
edge_list = sorted(edge_list, key=lambda x: (x[1], x[0], x[2]))
edge_list = np.asarray(edge_list, dtype=np.int)
edge_list = np.asarray(edge_list, dtype=int)
print('Number of edges: ', len(edge_list))
np.savez(edge_file, edges=edge_list, n=np.asarray(num_node), nrel=np.asarray(num_rel))
......
......@@ -156,7 +156,7 @@ class MiniGCDataset(DGLDataset):
for i in range(self.num_graphs):
# convert to DGLGraph, and add self loops
self.graphs[i] = add_self_loop(from_networkx(self.graphs[i]))
self.labels = F.tensor(np.array(self.labels).astype(np.int))
self.labels = F.tensor(np.array(self.labels).astype(int))
def _gen_cycle(self, n):
for _ in range(n):
......
......@@ -168,7 +168,7 @@ setup(
maintainer_email='wmjlyjemaine@gmail.com',
packages=find_packages(),
install_requires=[
'numpy>=1.14.0',
'numpy>=1.20.0',
'scipy>=1.1.0',
'networkx>=2.1',
'requests>=2.19.0',
......
......@@ -510,12 +510,12 @@ def _test_construct_graphs_multiple():
num_edges = 1000
num_graphs = 10
num_dims = 3
node_ids = np.array([], dtype=np.int)
src_ids = np.array([], dtype=np.int)
dst_ids = np.array([], dtype=np.int)
ngraph_ids = np.array([], dtype=np.int)
egraph_ids = np.array([], dtype=np.int)
u_indices = np.array([], dtype=np.int)
node_ids = np.array([], dtype=int)
src_ids = np.array([], dtype=int)
dst_ids = np.array([], dtype=int)
ngraph_ids = np.array([], dtype=int)
egraph_ids = np.array([], dtype=int)
u_indices = np.array([], dtype=int)
for i in range(num_graphs):
l_node_ids = np.random.choice(
np.arange(num_nodes*2), size=num_nodes, replace=False)
......@@ -1191,7 +1191,7 @@ def _test_NodeEdgeGraphData():
from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData
# NodeData basics
num_nodes = 100
node_ids = np.arange(num_nodes, dtype=np.float)
node_ids = np.arange(num_nodes, dtype=float)
ndata = NodeData(node_ids, {})
assert np.array_equal(ndata.id, node_ids)
assert len(ndata.data) == 0
......@@ -1228,8 +1228,8 @@ def _test_NodeEdgeGraphData():
assert len(edata.data) == 0
assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
# EdageData more
src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
src_ids = np.random.randint(num_nodes, size=num_edges).astype(float)
dst_ids = np.random.randint(num_nodes, size=num_edges).astype(float)
data = {'feat': np.random.rand(num_edges, 3)}
etype = ('user', 'like', 'item')
graph_ids = np.arange(num_edges)
......@@ -1259,7 +1259,7 @@ def _test_NodeEdgeGraphData():
assert np.array_equal(gdata.graph_id, graph_ids)
assert len(gdata.data) == 0
# GraphData more
graph_ids = np.arange(num_graphs).astype(np.float)
graph_ids = np.arange(num_graphs).astype(float)
data = {'feat': np.random.rand(num_graphs, 3)}
gdata = GraphData(graph_ids, data)
assert np.array_equal(gdata.graph_id, graph_ids)
......
......@@ -1125,8 +1125,8 @@ def test_convert(idtype):
dsttype = hg.ntypes[ntype_id[dst[i]]]
etype = hg.etypes[etype_id[i]]
src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]
assert np.ndarray.item(F.asnumpy(src_i)) == nid[src[i]]
assert np.ndarray.item(F.asnumpy(dst_i)) == nid[dst[i]]
mg = nx.MultiDiGraph([
('user', 'user', 'follows'),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment