Unverified Commit bcd37684 authored by Hongzhi (Steve), Chen's avatar Hongzhi (Steve), Chen Committed by GitHub
Browse files

[Misc] Replace /*! with /**. (#4823)



* replace

* blabla

* balbla

* blabla
Co-authored-by: default avatarSteve <ubuntu@ip-172-31-34-29.ap-northeast-1.compute.internal>
parent 619d735d
/*!
/**
* Copyright (c) 2021 by Contributors
* @file array/filter.h
* @brief Object for selecting items in a set, or selecting items not in a set.
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file array/kernel.cc
* @brief New kernels
......@@ -23,7 +23,7 @@ namespace {
} // namespace
/*! @brief Generalized Sparse Matrix-Matrix Multiplication. */
/** @brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
HeteroGraphPtr graph,
NDArray ufeat,
......@@ -54,7 +54,7 @@ void SpMM(const std::string& op, const std::string& reduce,
}
/*! @brief Generalized segmented dense Matrix-Matrix Multiplication. */
/** @brief Generalized segmented dense Matrix-Matrix Multiplication. */
void SegmentMM(const NDArray A,
const NDArray B,
NDArray C,
......@@ -102,7 +102,7 @@ void SegmentMMBackwardB(const NDArray A,
}
/*! @brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
/** @brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
void GatherMM(const NDArray A,
const NDArray B,
NDArray C,
......@@ -139,7 +139,7 @@ void GatherMM(const NDArray A,
}
/*! @brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
/** @brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
void GatherMMScatter(const NDArray A,
const NDArray B,
NDArray C,
......@@ -179,7 +179,7 @@ void GatherMMScatter(const NDArray A,
}
/*! @brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
/** @brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
HeteroGraphPtr graph,
const std::vector<NDArray>& ufeat_vec,
......@@ -227,7 +227,7 @@ void SpMMHetero(const std::string& op, const std::string& reduce,
}
/*! @brief Generalized Sampled Dense-Dense Matrix Multiplication. */
/** @brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
HeteroGraphPtr graph,
NDArray lhs,
......@@ -258,7 +258,7 @@ void SDDMM(const std::string& op,
});
}
/*!
/**
* @brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
*
* @param graph The input graph.
......@@ -274,7 +274,7 @@ int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
return etype;
}
/*! @brief Generalized Sampled Dense-Dense Matrix Multiplication. */
/** @brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
HeteroGraphPtr graph,
std::vector<NDArray> lhs,
......@@ -322,7 +322,7 @@ void SDDMMHetero(const std::string& op,
}
/*! @brief Generalized Edge_softmax op for forward */
/** @brief Generalized Edge_softmax op for forward */
void Edge_softmax_forward(const std::string& op,
HeteroGraphPtr graph,
NDArray ufeat,
......@@ -342,7 +342,7 @@ void Edge_softmax_forward(const std::string& op,
}
/*! @brief Generalized Edge_softmax op for backward */
/** @brief Generalized Edge_softmax op for backward */
void Edge_softmax_backward(const std::string& op,
HeteroGraphPtr graph,
NDArray out,
......@@ -372,7 +372,7 @@ NDArray GetEdgeMapping(HeteroGraphRef graph) {
}
}
/*! @brief Segment reduce dispatch function. */
/** @brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
NDArray feat,
NDArray offsets,
......@@ -387,7 +387,7 @@ void SegmentReduceDispatch(const std::string& op,
});
}
/*! @brief Scatter Add (on first dimension) dispatch function. */
/** @brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
......@@ -398,7 +398,7 @@ void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
});
}
/*! @brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
/** @brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
const std::string& op,
const std::vector<NDArray>& feat,
......@@ -416,7 +416,7 @@ void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
});
}
/*! @brief Backward segment cmp dispatch function.*/
/** @brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
......@@ -723,7 +723,7 @@ DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
*rv = GetEdgeMapping(graph);
});
/*!
/**
* @brief Sparse matrix multiplication with graph interface.
*
* @param A_ref The left operand.
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file array/kernel_decl.h
* @brief Sparse matrix format-specific operator declarations.
......@@ -17,7 +17,7 @@
namespace dgl {
namespace aten {
/*!
/**
* @brief Generalized Sparse Matrix Dense Matrix Multiplication on Csr format.
*/
template <int XPU, typename IdType, typename DType>
......@@ -29,7 +29,7 @@ void SpMMCsr(const std::string& op, const std::string& reduce,
NDArray out,
std::vector<NDArray> out_aux);
/*!
/**
* @brief Generalized Sparse Matrix Dense Matrix Multiplication on Csr format
with heterograph support.
*/
......@@ -43,7 +43,7 @@ void SpMMCsrHetero(const std::string& op, const std::string& reduce,
std::vector<std::vector<NDArray>>* out_aux,
const std::vector<dgl_type_t>& ufeat_eid,
const std::vector<dgl_type_t>& out_eid);
/*!
/**
* @brief Generalized Sparse Matrix Dense Matrix Multiplication on Coo format.
*/
template <int XPU, typename IdType, typename DType>
......@@ -55,7 +55,7 @@ void SpMMCoo(const std::string& op, const std::string& reduce,
NDArray out,
std::vector<NDArray> out_aux);
/*!
/**
* @brief Generalized Sampled Dense-Dense Matrix Multiplication on Csr format.
*/
template <int XPU, typename IdType, typename DType>
......@@ -67,7 +67,7 @@ void SDDMMCsr(const std::string& op,
NDArray out,
int lhs_target,
int rhs_target);
/*!
/**
* @brief Generalized Sampled Dense-Dense Matrix Multiplication on Csr
format with heterograph support.
*/
......@@ -83,7 +83,7 @@ void SDDMMCsrHetero(const std::string& op,
const std::vector<dgl_type_t>& ufeat_eid,
const std::vector<dgl_type_t>& out_eid);
/*!
/**
* @brief Generalized Sampled Dense-Dense Matrix Multiplication on Coo format.
*/
template <int XPU, typename IdType, typename DType>
......@@ -96,7 +96,7 @@ void SDDMMCoo(const std::string& op,
int lhs_target,
int rhs_target);
/*!
/**
* @brief Generalized Sampled Dense-Dense Matrix Multiplication on Coo
format with heterograph support.
*/
......@@ -112,7 +112,7 @@ void SDDMMCooHetero(const std::string& op,
const std::vector<dgl_type_t>& lhs_eid,
const std::vector<dgl_type_t>& rhs_eid);
/*!
/**
* @brief Generalized Dense Matrix-Matrix Multiplication according to relation types.
*/
template <int XPU, typename IdType, typename DType>
......@@ -122,7 +122,7 @@ void GatherMM(const NDArray A,
const NDArray idx_a,
const NDArray idx_b);
/*!
/**
* @brief Generalized Dense Matrix-Matrix Multiplication according to relation types.
*/
template <int XPU, typename IdType, typename DType>
......@@ -133,7 +133,7 @@ void GatherMMScatter(const NDArray A,
const NDArray idx_b,
const NDArray idx_c);
/*!
/**
* @brief Generalized segmented dense Matrix-Matrix Multiplication.
*/
template <int XPU, typename IdType, typename DType>
......@@ -149,7 +149,7 @@ void SegmentMMBackwardB(const NDArray A,
NDArray dB,
const NDArray seglen);
/*!
/**
* @brief Segment reduce.
*/
template <int XPU, typename IdType, typename DType>
......@@ -159,7 +159,7 @@ void SegmentReduce(const std::string& op,
NDArray out,
NDArray arg);
/*!
/**
* @brief Scatter Add on first dimension.
*/
template <int XPU, typename IdType, typename DType>
......@@ -167,7 +167,7 @@ void ScatterAdd(NDArray feat,
NDArray idx,
NDArray out);
/*!
/**
* @brief Update gradients for reduce operator max and min on first dimension.
*/
template <int XPU, typename IdType, typename DType>
......@@ -178,7 +178,7 @@ void UpdateGradMinMax_hetero(const HeteroGraphPtr& g,
const std::vector<NDArray>& idx_etype,
std::vector<NDArray>* out);
/*!
/**
* @brief Backward function of segment cmp.
*/
template <int XPU, typename IdType, typename DType>
......@@ -186,7 +186,7 @@ void BackwardSegmentCmp(NDArray feat,
NDArray arg,
NDArray out);
/*!
/**
* @brief Sparse-sparse matrix multiplication
*
* @param A The left operand.
......@@ -205,7 +205,7 @@ std::pair<CSRMatrix, NDArray> CSRMM(
const CSRMatrix& B,
NDArray B_weights);
/*!
/**
* @brief Sparse-sparse matrix summation.
*
* @param A The sparse matrices with the same size.
......@@ -220,7 +220,7 @@ std::pair<CSRMatrix, NDArray> CSRSum(
const std::vector<CSRMatrix>& A,
const std::vector<NDArray>& A_weights);
/*!
/**
* @brief Edge_softmax_csr forward function on Csr format.
*/
template <int XPU, typename IdType, typename DType>
......@@ -230,7 +230,7 @@ void Edge_softmax_csr_forward(const std::string& op,
NDArray ufeat,
NDArray efeat,
NDArray out);
/*!
/**
* @brief Edge_softmax_csr backward function on Csr format.
*/
template <int XPU, typename IdType, typename DType>
......
/*
/**
Copyright (c) 2021 Intel Corporation
\file distgnn/partition/main_Libra.py
\brief Libra - Vertex-cut based graph partitioner for distirbuted training
......@@ -42,7 +42,7 @@ int32_t Ver2partition(IdType in_val, int64_t *node_map, int32_t num_parts) {
LOG(FATAL) << "Error: Unexpected output in Ver2partition!";
}
/*!
/**
* @brief Identifies the lead loaded partition/community for a given edge
* assignment.
*/
......@@ -65,7 +65,7 @@ int32_t LeastLoad(int64_t *community_edges, int32_t nc) {
return loc[r];
}
/*!
/**
* @brief Libra - vertexcut based graph partitioning.
* It takes list of edges from input DGL graph and distributed them among nc
* partitions During edge distribution, Libra assign a given edge to a partition
......@@ -324,7 +324,7 @@ DGL_REGISTER_GLOBAL("sparse._CAPI_DGLLibraVertexCut")
});
});
/*!
/**
* @brief
* 1. Builds dictionary (ldt) for assigning local node IDs to nodes in the
* partitions
......@@ -456,7 +456,7 @@ DGL_REGISTER_GLOBAL("sparse._CAPI_DGLLibra2dglBuildDict")
*rv = ret;
});
/*!
/**
* @brief sets up the 1-level tree among the clones of the split-nodes.
* @param[in] gdt_key global dict for assigning consecutive node IDs to nodes
* across all the partitions
......@@ -506,7 +506,7 @@ DGL_REGISTER_GLOBAL("sparse._CAPI_DGLLibra2dglSetLR")
Libra2dglSetLR(gdt_key, gdt_value, lrtensor, nc, Nn);
});
/*!
/**
* @brief For each node in a partition, it creates a list of remote clone IDs;
* also, for each node in a partition, it gathers the data (feats, label,
* trian, test) from input graph.
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file array/selector.h
* @brief Selector functions to select among src/edge/dst attributes.
......@@ -22,7 +22,7 @@ namespace {
} // namespace
/*!
/**
* @brief Select among src/edge/dst feature/idx.
* @note the integer argument target specifies which target
* to choose, 0: src, 1: edge, 2: dst.
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file array/cpu/coo_union_partition.cc
* @brief COO union and partition
......
/*!
/**
* Copyright (c) 2019-2022 by Contributors
* @file array/uvm_array.cc
* @brief DGL array utilities implementation
......
/*!
/**
* Copyright (c) 2019-2022 by Contributors
* @file array/uvm_array_op.h
* @brief Array operator templates
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file kernel/bcast.h
* @brief Broadcast related function implementations.
......@@ -11,7 +11,7 @@
namespace dgl {
namespace {
/*!
/**
* @brief Determine whether use broadcasting or not, given the operator
* type, lhs array and rhs array.
*/
......@@ -27,7 +27,7 @@ bool UseBcast(const std::string& op, NDArray lhs, NDArray rhs) {
} // namespace
/*!
/**
* @brief: Compute broadcast and auxiliary information given operator
* and operands for kernel computation.
* @note: Expect lhs, rhs to have ndim >= 2 and the shape of lhs/rhs
......
/*!
/**
* Copyright (c) 2018 by Contributors
* @file c_runtime_api.cc
* @brief DGL C API common implementations
......
/*!
/**
* Copyright (c) 2018 by Contributors
* @file c_api_common.h
* @brief DGL C API common util functions
......@@ -25,13 +25,13 @@ typedef void* CommunicatorHandle;
// KVstore message handler type
typedef void* KVMsgHandle;
/*!
/**
* @brief Convert a vector of NDArray to PackedFunc.
*/
dgl::runtime::PackedFunc ConvertNDArrayVectorToPackedFunc(
const std::vector<dgl::runtime::NDArray>& vec);
/*!
/**
* @brief Copy a vector to an NDArray.
*
* The data type of the NDArray will be IdType, which must be an integer type.
......
/*!
/**
* Copyright (c) 2019 by Contributors
* @file array/cpu/geometry_op_impl.cc
* @brief Geometry operator CPU implementation
......@@ -16,7 +16,7 @@ using runtime::NDArray;
namespace geometry {
namespace impl {
/*! @brief Knuth shuffle algorithm */
/** @brief Knuth shuffle algorithm */
template <typename IdType>
void IndexShuffle(IdType *idxs, int64_t num_elems) {
for (int64_t i = num_elems - 1; i > 0; --i) {
......@@ -27,7 +27,7 @@ void IndexShuffle(IdType *idxs, int64_t num_elems) {
template void IndexShuffle<int32_t>(int32_t *idxs, int64_t num_elems);
template void IndexShuffle<int64_t>(int64_t *idxs, int64_t num_elems);
/*! @brief Groupwise index shuffle algorithm. This function will perform shuffle
/** @brief Groupwise index shuffle algorithm. This function will perform shuffle
* in subarrays indicated by group index. The group index is similar to indptr
* in CSRMatrix.
*
......@@ -76,7 +76,7 @@ IdArray GroupRandomPerm(
return perm;
}
/*!
/**
* @brief Farthest Point Sampler without the need to compute all pairs of
* distance.
*
......
/*!
/**
* Copyright (c) 2019 by Contributors
* @file geometry/cuda/edge_coarsening_impl.cu
* @brief Edge coarsening CUDA implementation
......@@ -109,7 +109,7 @@ __global__ void weighted_respond_kernel(
}
}
/*! @brief The colorize procedure. This procedure randomly marks unmarked
/** @brief The colorize procedure. This procedure randomly marks unmarked
* nodes with BLUE(-1) and RED(-2) and checks whether the node matching
* process has finished.
*/
......@@ -137,7 +137,7 @@ bool Colorize(IdType *result_data, int64_t num_nodes, float *const prop) {
return done_h;
}
/*! @brief Weighted neighbor matching procedure (GPU version).
/** @brief Weighted neighbor matching procedure (GPU version).
* This implementation is from `A GPU Algorithm for Greedy Graph Matching
* <http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf>`__
*
......@@ -198,7 +198,7 @@ template void WeightedNeighborMatching<kDGLCUDA, double, int32_t>(
template void WeightedNeighborMatching<kDGLCUDA, double, int64_t>(
const aten::CSRMatrix &csr, const NDArray weight, IdArray result);
/*! @brief Unweighted neighbor matching procedure (GPU version).
/** @brief Unweighted neighbor matching procedure (GPU version).
* Instead of directly sample neighbors, we assign each neighbor
* with a random weight. We use random weight for 2 reasons:
* 1. Random sample for each node in GPU is expensive. Although
......
/*!
/**
* Copyright (c) 2019 by Contributors
* @file geometry/cuda/geometry_op_impl.cc
* @brief Geometry operator CUDA implementation
......@@ -15,7 +15,7 @@ namespace dgl {
namespace geometry {
namespace impl {
/*!
/**
* @brief Farthest Point Sampler without the need to compute all pairs of
* distance.
*
......
/*!
/**
* Copyright (c) 2019 by Contributors
* @file geometry/geometry.cc
* @brief DGL geometry utilities implementation
......
/*!
/**
* Copyright (c) 2019 by Contributors
* @file geometry/geometry_op.h
* @brief Geometry operator templates
......@@ -17,7 +17,7 @@ void FarthestPointSampler(
NDArray array, int64_t batch_size, int64_t sample_points, NDArray dist,
IdArray start_idx, IdArray result);
/*! @brief Implementation of weighted neighbor matching process of edge
/** @brief Implementation of weighted neighbor matching process of edge
* coarsening used in Metis and Graclus for homogeneous graph coarsening. This
* procedure keeps picking an unmarked vertex and matching it with one its
* unmarked neighbors (that maximizes its edge weight) until no match can be
......@@ -27,7 +27,7 @@ template <DGLDeviceType XPU, typename FloatType, typename IdType>
void WeightedNeighborMatching(
const aten::CSRMatrix &csr, const NDArray weight, IdArray result);
/*! @brief Implementation of neighbor matching process of edge coarsening used
/** @brief Implementation of neighbor matching process of edge coarsening used
* in Metis and Graclus for homogeneous graph coarsening. This procedure keeps
* picking an unmarked vertex and matching it with one its unmarked neighbors
* (that maximizes its edge weight) until no match can be done.
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file graph/creators.cc
* @brief Functions for constructing graphs.
......
/*!
/**
* Copyright (c) 2020 by Contributors
* @file graph/gk_ops.cc
* @brief Graph operation implemented in GKlib
......@@ -14,7 +14,7 @@ namespace dgl {
#if !defined(_WIN32)
/*!
/**
* Convert DGL CSR to GKLib CSR.
* GKLib CSR actually stores a CSR object and a CSC object of a graph.
* @param mat the DGL CSR matrix.
......@@ -60,7 +60,7 @@ gk_csr_t *Convert2GKCsr(const aten::CSRMatrix mat, bool is_row) {
return gk_csr;
}
/*!
/**
* Convert GKLib CSR to DGL CSR.
* GKLib CSR actually stores a CSR object and a CSC object of a graph.
* @param gk_csr the GKLib CSR.
......
/*!
/**
* Copyright (c) 2018 by Contributors
* @file graph/graph.cc
* @brief DGL graph index implementation
......
/*!
/**
* Copyright (c) 2018 by Contributors
* @file graph/graph.cc
* @brief DGL graph index APIs
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment