Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
b20455a2
Unverified
Commit
b20455a2
authored
Dec 12, 2023
by
Rhett Ying
Committed by
GitHub
Dec 12, 2023
Browse files
[GraphBolt] move to_dgl() for tutorial notebooks (#6727)
parent
ffe2871b
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
55 additions
and
11 deletions
+55
-11
notebooks/stochastic_training/link_prediction.ipynb
notebooks/stochastic_training/link_prediction.ipynb
+31
-8
notebooks/stochastic_training/node_classification.ipynb
notebooks/stochastic_training/node_classification.ipynb
+24
-3
No files found.
notebooks/stochastic_training/link_prediction.ipynb
View file @
b20455a2
...
@@ -4,9 +4,7 @@
...
@@ -4,9 +4,7 @@
"metadata": {
"metadata": {
"colab": {
"colab": {
"private_outputs": true,
"private_outputs": true,
"provenance": [],
"provenance": []
"authorship_tag": "ABX9TyOjqI7Q6kAUIF+Fhf3q8KUM",
"include_colab_link": true
},
},
"kernelspec": {
"kernelspec": {
"name": "python3",
"name": "python3",
...
@@ -143,7 +141,6 @@
...
@@ -143,7 +141,6 @@
"datapipe = datapipe.sample_uniform_negative(graph, 5)\n",
"datapipe = datapipe.sample_uniform_negative(graph, 5)\n",
"datapipe = datapipe.sample_neighbor(graph, [5, 5, 5])\n",
"datapipe = datapipe.sample_neighbor(graph, [5, 5, 5])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n",
"datapipe = datapipe.copy_to(device)\n",
"train_dataloader = gb.DataLoader(datapipe, num_workers=0)"
"train_dataloader = gb.DataLoader(datapipe, num_workers=0)"
],
],
...
@@ -167,7 +164,7 @@
...
@@ -167,7 +164,7 @@
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"data = next(iter(train_dataloader))\n",
"data = next(iter(train_dataloader))\n",
"print(f\"
DGL
MiniBatch: {data}\")"
"print(f\"MiniBatch: {data}\")"
],
],
"metadata": {
"metadata": {
"id": "euEdzmerYmZi"
"id": "euEdzmerYmZi"
...
@@ -175,6 +172,27 @@
...
@@ -175,6 +172,27 @@
"execution_count": null,
"execution_count": null,
"outputs": []
"outputs": []
},
},
{
"cell_type": "markdown",
"source": [
"In order to train with DGL, you need to convert `MiniBatch` to `DGLMiniBatch` like below:"
],
"metadata": {
"id": "IpAgrEp_cdEP"
}
},
{
"cell_type": "code",
"source": [
"data = data.to_dgl()\n",
"print(f\"DGLMiniBatch: {data}\")"
],
"metadata": {
"id": "KQgxFUyCcjVT"
},
"execution_count": null,
"outputs": []
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"source": [
"source": [
...
@@ -295,7 +313,10 @@
...
@@ -295,7 +313,10 @@
" model.train()\n",
" model.train()\n",
" total_loss = 0\n",
" total_loss = 0\n",
" for step, data in tqdm.tqdm(enumerate(train_dataloader)):\n",
" for step, data in tqdm.tqdm(enumerate(train_dataloader)):\n",
" # Unpack MiniBatch.\n",
" # Convert to DGL format.\n",
" data = data.to_dgl()\n",
"\n",
" # Unpack DGLMiniBatch.\n",
" compacted_pairs, labels = to_binary_link_dgl_computing_pack(data)\n",
" compacted_pairs, labels = to_binary_link_dgl_computing_pack(data)\n",
" node_feature = data.node_features[\"feat\"]\n",
" node_feature = data.node_features[\"feat\"]\n",
" # Convert sampled subgraphs to DGL blocks.\n",
" # Convert sampled subgraphs to DGL blocks.\n",
...
@@ -342,13 +363,15 @@
...
@@ -342,13 +363,15 @@
"# to -1.\n",
"# to -1.\n",
"datapipe = datapipe.sample_neighbor(graph, [-1, -1])\n",
"datapipe = datapipe.sample_neighbor(graph, [-1, -1])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n",
"datapipe = datapipe.copy_to(device)\n",
"eval_dataloader = gb.DataLoader(datapipe, num_workers=0)\n",
"eval_dataloader = gb.DataLoader(datapipe, num_workers=0)\n",
"\n",
"\n",
"logits = []\n",
"logits = []\n",
"labels = []\n",
"labels = []\n",
"for step, data in enumerate(eval_dataloader):\n",
"for step, data in enumerate(eval_dataloader):\n",
" # Convert to DGL format.\n",
" data = data.to_dgl()\n",
"\n",
" # Unpack MiniBatch.\n",
" # Unpack MiniBatch.\n",
" compacted_pairs, label = to_binary_link_dgl_computing_pack(data)\n",
" compacted_pairs, label = to_binary_link_dgl_computing_pack(data)\n",
"\n",
"\n",
...
...
notebooks/stochastic_training/node_classification.ipynb
View file @
b20455a2
...
@@ -152,7 +152,6 @@
...
@@ -152,7 +152,6 @@
"datapipe = gb.ItemSampler(train_set, batch_size=1024, shuffle=True)\n",
"datapipe = gb.ItemSampler(train_set, batch_size=1024, shuffle=True)\n",
"datapipe = datapipe.sample_neighbor(graph, [4, 4])\n",
"datapipe = datapipe.sample_neighbor(graph, [4, 4])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n",
"datapipe = datapipe.copy_to(device)\n",
"train_dataloader = gb.DataLoader(datapipe, num_workers=0)"
"train_dataloader = gb.DataLoader(datapipe, num_workers=0)"
],
],
...
@@ -165,7 +164,7 @@
...
@@ -165,7 +164,7 @@
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"source": [
"source": [
"You can iterate over the data loader and a `
DGL
MiniBatch` object is yielded.\n",
"You can iterate over the data loader and a `MiniBatch` object is yielded.\n",
"\n"
"\n"
],
],
"metadata": {
"metadata": {
...
@@ -184,6 +183,27 @@
...
@@ -184,6 +183,27 @@
"execution_count": null,
"execution_count": null,
"outputs": []
"outputs": []
},
},
{
"cell_type": "markdown",
"source": [
"In order to train with DGL, you need to convert `MiniBatch` to `DGLMiniBatch` like below:"
],
"metadata": {
"id": "FwDJf1AJbNtt"
}
},
{
"cell_type": "code",
"source": [
"data = data.to_dgl()\n",
"print(data)"
],
"metadata": {
"id": "3Tzfp6A8bdWv"
},
"execution_count": null,
"outputs": []
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"source": [
"source": [
...
@@ -285,7 +305,6 @@
...
@@ -285,7 +305,6 @@
"datapipe = gb.ItemSampler(valid_set, batch_size=1024, shuffle=False)\n",
"datapipe = gb.ItemSampler(valid_set, batch_size=1024, shuffle=False)\n",
"datapipe = datapipe.sample_neighbor(graph, [4, 4])\n",
"datapipe = datapipe.sample_neighbor(graph, [4, 4])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n",
"datapipe = datapipe.copy_to(device)\n",
"valid_dataloader = gb.DataLoader(datapipe, num_workers=0)\n",
"valid_dataloader = gb.DataLoader(datapipe, num_workers=0)\n",
"\n",
"\n",
...
@@ -317,6 +336,7 @@
...
@@ -317,6 +336,7 @@
"\n",
"\n",
" with tqdm.tqdm(train_dataloader) as tq:\n",
" with tqdm.tqdm(train_dataloader) as tq:\n",
" for step, data in enumerate(tq):\n",
" for step, data in enumerate(tq):\n",
" data = data.to_dgl()\n",
" x = data.node_features[\"feat\"]\n",
" x = data.node_features[\"feat\"]\n",
" labels = data.labels\n",
" labels = data.labels\n",
"\n",
"\n",
...
@@ -343,6 +363,7 @@
...
@@ -343,6 +363,7 @@
" labels = []\n",
" labels = []\n",
" with tqdm.tqdm(valid_dataloader) as tq, torch.no_grad():\n",
" with tqdm.tqdm(valid_dataloader) as tq, torch.no_grad():\n",
" for data in tq:\n",
" for data in tq:\n",
" data = data.to_dgl()\n",
" x = data.node_features[\"feat\"]\n",
" x = data.node_features[\"feat\"]\n",
" labels.append(data.labels.cpu().numpy())\n",
" labels.append(data.labels.cpu().numpy())\n",
" predictions.append(model(data.blocks, x).argmax(1).cpu().numpy())\n",
" predictions.append(model(data.blocks, x).argmax(1).cpu().numpy())\n",
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment