Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
ab0c0ec6
Unverified
Commit
ab0c0ec6
authored
Jan 06, 2023
by
peizhou001
Committed by
GitHub
Jan 06, 2023
Browse files
[API Deprecation] Deprecate candidates in convert module (#4988) (#5115)
parent
46a3fc2b
Changes
13
Show whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
16 additions
and
74 deletions
+16
-74
python/dgl/convert.py
python/dgl/convert.py
+2
-62
python/dgl/distributed/dist_graph.py
python/dgl/distributed/dist_graph.py
+3
-1
python/dgl/nn/mxnet/conv/gmmconv.py
python/dgl/nn/mxnet/conv/gmmconv.py
+1
-1
python/dgl/nn/mxnet/conv/graphconv.py
python/dgl/nn/mxnet/conv/graphconv.py
+1
-1
python/dgl/nn/mxnet/conv/nnconv.py
python/dgl/nn/mxnet/conv/nnconv.py
+1
-1
python/dgl/nn/mxnet/conv/sageconv.py
python/dgl/nn/mxnet/conv/sageconv.py
+1
-1
python/dgl/nn/pytorch/conv/dotgatconv.py
python/dgl/nn/pytorch/conv/dotgatconv.py
+1
-1
python/dgl/nn/pytorch/conv/edgeconv.py
python/dgl/nn/pytorch/conv/edgeconv.py
+1
-1
python/dgl/nn/pytorch/conv/gmmconv.py
python/dgl/nn/pytorch/conv/gmmconv.py
+1
-1
python/dgl/nn/pytorch/conv/nnconv.py
python/dgl/nn/pytorch/conv/nnconv.py
+1
-1
python/dgl/nn/pytorch/conv/sageconv.py
python/dgl/nn/pytorch/conv/sageconv.py
+1
-1
python/dgl/nn/tensorflow/conv/graphconv.py
python/dgl/nn/tensorflow/conv/graphconv.py
+1
-1
python/dgl/nn/tensorflow/conv/sageconv.py
python/dgl/nn/tensorflow/conv/sageconv.py
+1
-1
No files found.
python/dgl/convert.py
View file @
ab0c0ec6
...
@@ -10,20 +10,16 @@ from . import heterograph_index
...
@@ -10,20 +10,16 @@ from . import heterograph_index
from
.heterograph
import
DGLGraph
,
combine_frames
,
DGLBlock
from
.heterograph
import
DGLGraph
,
combine_frames
,
DGLBlock
from
.
import
graph_index
from
.
import
graph_index
from
.
import
utils
from
.
import
utils
from
.base
import
NTYPE
,
ETYPE
,
NID
,
EID
,
DGLError
,
dgl_warning
from
.base
import
NTYPE
,
ETYPE
,
NID
,
EID
,
DGLError
__all__
=
[
__all__
=
[
'graph'
,
'graph'
,
'bipartite'
,
'hetero_from_relations'
,
'hetero_from_shared_memory'
,
'hetero_from_shared_memory'
,
'heterograph'
,
'heterograph'
,
'create_block'
,
'create_block'
,
'block_to_graph'
,
'block_to_graph'
,
'to_heterogeneous'
,
'to_heterogeneous'
,
'to_hetero'
,
'to_homogeneous'
,
'to_homogeneous'
,
'to_homo'
,
'from_scipy'
,
'from_scipy'
,
'bipartite_from_scipy'
,
'bipartite_from_scipy'
,
'from_networkx'
,
'from_networkx'
,
...
@@ -34,14 +30,12 @@ __all__ = [
...
@@ -34,14 +30,12 @@ __all__ = [
]
]
def
graph
(
data
,
def
graph
(
data
,
ntype
=
None
,
etype
=
None
,
*
,
*
,
num_nodes
=
None
,
num_nodes
=
None
,
idtype
=
None
,
idtype
=
None
,
device
=
None
,
device
=
None
,
row_sorted
=
False
,
row_sorted
=
False
,
col_sorted
=
False
,
col_sorted
=
False
):
**
deprecated_kwargs
):
"""Create a graph and return.
"""Create a graph and return.
Parameters
Parameters
...
@@ -67,10 +61,6 @@ def graph(data,
...
@@ -67,10 +61,6 @@ def graph(data,
The tensors can be replaced with any iterable of integers (e.g. list, tuple,
The tensors can be replaced with any iterable of integers (e.g. list, tuple,
numpy.ndarray).
numpy.ndarray).
ntype : str, optional
Deprecated. To construct a graph with named node types, use :func:`dgl.heterograph`.
etype : str, optional
Deprecated. To construct a graph with named edge types, use :func:`dgl.heterograph`.
num_nodes : int, optional
num_nodes : int, optional
The number of nodes in the graph. If not given, this will be the largest node ID
The number of nodes in the graph. If not given, this will be the largest node ID
plus 1 from the :attr:`data` argument. If given and the value is no greater than
plus 1 from the :attr:`data` argument. If given and the value is no greater than
...
@@ -156,14 +146,6 @@ def graph(data,
...
@@ -156,14 +146,6 @@ def graph(data,
from_scipy
from_scipy
from_networkx
from_networkx
"""
"""
# Deprecated arguments
if
ntype
is
not
None
:
raise
DGLError
(
'The ntype argument is deprecated for dgl.graph. To construct '
\
'a graph with named node types, use dgl.heterograph.'
)
if
etype
is
not
None
:
raise
DGLError
(
'The etype argument is deprecated for dgl.graph. To construct '
\
'a graph with named edge types, use dgl.heterograph.'
)
if
isinstance
(
data
,
spmatrix
):
if
isinstance
(
data
,
spmatrix
):
raise
DGLError
(
"dgl.graph no longer supports graph construction from a SciPy "
raise
DGLError
(
"dgl.graph no longer supports graph construction from a SciPy "
"sparse matrix, use dgl.from_scipy instead."
)
"sparse matrix, use dgl.from_scipy instead."
)
...
@@ -172,12 +154,6 @@ def graph(data,
...
@@ -172,12 +154,6 @@ def graph(data,
raise
DGLError
(
"dgl.graph no longer supports graph construction from a NetworkX "
raise
DGLError
(
"dgl.graph no longer supports graph construction from a NetworkX "
"graph, use dgl.from_networkx instead."
)
"graph, use dgl.from_networkx instead."
)
if
len
(
deprecated_kwargs
)
!=
0
:
raise
DGLError
(
"Key word arguments {} have been removed from dgl.graph()."
" They are moved to dgl.from_scipy() and dgl.from_networkx()."
" Please refer to their API documents for more details."
.
format
(
deprecated_kwargs
.
keys
()))
(
sparse_fmt
,
arrays
),
urange
,
vrange
=
utils
.
graphdata2tensors
(
data
,
idtype
)
(
sparse_fmt
,
arrays
),
urange
,
vrange
=
utils
.
graphdata2tensors
(
data
,
idtype
)
if
num_nodes
is
not
None
:
# override the number of nodes
if
num_nodes
is
not
None
:
# override the number of nodes
if
num_nodes
<
max
(
urange
,
vrange
):
if
num_nodes
<
max
(
urange
,
vrange
):
...
@@ -190,24 +166,6 @@ def graph(data,
...
@@ -190,24 +166,6 @@ def graph(data,
return
g
.
to
(
device
)
return
g
.
to
(
device
)
def
bipartite
(
data
,
utype
=
'_U'
,
etype
=
'_E'
,
vtype
=
'_V'
,
num_nodes
=
None
,
card
=
None
,
validate
=
True
,
restrict_format
=
'any'
,
**
kwargs
):
"""DEPRECATED: use dgl.heterograph instead."""
raise
DGLError
(
'dgl.bipartite is deprecated. Use dgl.heterograph({'
+
"('{}', '{}', '{}')"
.
format
(
utype
,
etype
,
vtype
)
+
' : data} to create a bipartite graph instead.'
)
def
hetero_from_relations
(
rel_graphs
,
num_nodes_per_type
=
None
):
"""DEPRECATED: use dgl.heterograph instead."""
raise
DGLError
(
'dgl.hetero_from_relations is deprecated.
\n\n
'
'Use dgl.heterograph instead.'
)
def
hetero_from_shared_memory
(
name
):
def
hetero_from_shared_memory
(
name
):
"""Create a heterograph from shared memory with the given name.
"""Create a heterograph from shared memory with the given name.
...
@@ -826,16 +784,6 @@ def to_heterogeneous(G, ntypes, etypes, ntype_field=NTYPE,
...
@@ -826,16 +784,6 @@ def to_heterogeneous(G, ntypes, etypes, ntype_field=NTYPE,
return
hg
return
hg
def
to_hetero
(
G
,
ntypes
,
etypes
,
ntype_field
=
NTYPE
,
etype_field
=
ETYPE
,
metagraph
=
None
):
"""Convert the given homogeneous graph to a heterogeneous graph.
DEPRECATED: Please use to_heterogeneous
"""
dgl_warning
(
"dgl.to_hetero is deprecated. Please use dgl.to_heterogeneous"
)
return
to_heterogeneous
(
G
,
ntypes
,
etypes
,
ntype_field
=
ntype_field
,
etype_field
=
etype_field
,
metagraph
=
metagraph
)
def
to_homogeneous
(
G
,
ndata
=
None
,
edata
=
None
,
store_type
=
True
,
return_count
=
False
):
def
to_homogeneous
(
G
,
ndata
=
None
,
edata
=
None
,
store_type
=
True
,
return_count
=
False
):
"""Convert a heterogeneous graph to a homogeneous graph and return.
"""Convert a heterogeneous graph to a homogeneous graph and return.
...
@@ -991,14 +939,6 @@ def to_homogeneous(G, ndata=None, edata=None, store_type=True, return_count=Fals
...
@@ -991,14 +939,6 @@ def to_homogeneous(G, ndata=None, edata=None, store_type=True, return_count=Fals
else
:
else
:
return
retg
return
retg
def
to_homo
(
G
):
"""Convert the given heterogeneous graph to a homogeneous graph.
DEPRECATED: Please use to_homogeneous
"""
dgl_warning
(
"dgl.to_homo is deprecated. Please use dgl.to_homogeneous"
)
return
to_homogeneous
(
G
)
def
from_scipy
(
sp_mat
,
def
from_scipy
(
sp_mat
,
eweight_name
=
None
,
eweight_name
=
None
,
idtype
=
None
,
idtype
=
None
,
...
...
python/dgl/distributed/dist_graph.py
View file @
ab0c0ec6
...
@@ -652,7 +652,9 @@ class DistGraph:
...
@@ -652,7 +652,9 @@ class DistGraph:
--------
--------
The following example uses PyTorch backend.
The following example uses PyTorch backend.
>>> g = dgl.bipartite(([0, 1, 1, 2], [0, 0, 2, 1]), 'user', 'plays', 'game')
>>> g = dgl.heterograph({
... ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1])
... })
>>> print(g.device)
>>> print(g.device)
device(type='cpu')
device(type='cpu')
>>> g = g.to('cuda:0')
>>> g = g.to('cuda:0')
...
...
python/dgl/nn/mxnet/conv/gmmconv.py
View file @
ab0c0ec6
...
@@ -93,7 +93,7 @@ class GMMConv(nn.Block):
...
@@ -93,7 +93,7 @@ class GMMConv(nn.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = mx.nd.random.randn(2, 5)
>>> u_fea = mx.nd.random.randn(2, 5)
>>> v_fea = mx.nd.random.randn(4, 10)
>>> v_fea = mx.nd.random.randn(4, 10)
>>> pseudo = mx.nd.ones((5, 3))
>>> pseudo = mx.nd.ones((5, 3))
...
...
python/dgl/nn/mxnet/conv/graphconv.py
View file @
ab0c0ec6
...
@@ -120,7 +120,7 @@ class GraphConv(gluon.Block):
...
@@ -120,7 +120,7 @@ class GraphConv(gluon.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = mx.nd.random.randn(2, 5)
>>> u_fea = mx.nd.random.randn(2, 5)
>>> v_fea = mx.nd.random.randn(4, 5)
>>> v_fea = mx.nd.random.randn(4, 5)
>>> conv = GraphConv(5, 2, norm='both', weight=True, bias=True)
>>> conv = GraphConv(5, 2, norm='both', weight=True, bias=True)
...
...
python/dgl/nn/mxnet/conv/nnconv.py
View file @
ab0c0ec6
...
@@ -75,7 +75,7 @@ class NNConv(nn.Block):
...
@@ -75,7 +75,7 @@ class NNConv(nn.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_feat = mx.nd.random.randn(2, 10)
>>> u_feat = mx.nd.random.randn(2, 10)
>>> v_feat = mx.nd.random.randn(4, 10)
>>> v_feat = mx.nd.random.randn(4, 10)
>>> conv = NNConv(10, 2, edge_func, 'mean')
>>> conv = NNConv(10, 2, edge_func, 'mean')
...
...
python/dgl/nn/mxnet/conv/sageconv.py
View file @
ab0c0ec6
...
@@ -76,7 +76,7 @@ class SAGEConv(nn.Block):
...
@@ -76,7 +76,7 @@ class SAGEConv(nn.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = mx.nd.random.randn(2, 5)
>>> u_fea = mx.nd.random.randn(2, 5)
>>> v_fea = mx.nd.random.randn(4, 10)
>>> v_fea = mx.nd.random.randn(4, 10)
>>> conv = SAGEConv((5, 10), 2, 'pool')
>>> conv = SAGEConv((5, 10), 2, 'pool')
...
...
python/dgl/nn/pytorch/conv/dotgatconv.py
View file @
ab0c0ec6
...
@@ -99,7 +99,7 @@ class DotGatConv(nn.Module):
...
@@ -99,7 +99,7 @@ class DotGatConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_feat = th.tensor(np.random.rand(2, 5).astype(np.float32))
>>> u_feat = th.tensor(np.random.rand(2, 5).astype(np.float32))
>>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
>>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
>>> dotgatconv = DotGatConv((5,10), 2, 3)
>>> dotgatconv = DotGatConv((5,10), 2, 3)
...
...
python/dgl/nn/pytorch/conv/edgeconv.py
View file @
ab0c0ec6
...
@@ -81,7 +81,7 @@ class EdgeConv(nn.Module):
...
@@ -81,7 +81,7 @@ class EdgeConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = th.rand(2, 5)
>>> u_fea = th.rand(2, 5)
>>> v_fea = th.rand(4, 5)
>>> v_fea = th.rand(4, 5)
>>> conv = EdgeConv(5, 2, 3)
>>> conv = EdgeConv(5, 2, 3)
...
...
python/dgl/nn/pytorch/conv/gmmconv.py
View file @
ab0c0ec6
...
@@ -91,7 +91,7 @@ class GMMConv(nn.Module):
...
@@ -91,7 +91,7 @@ class GMMConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = th.rand(2, 5)
>>> u_fea = th.rand(2, 5)
>>> v_fea = th.rand(4, 10)
>>> v_fea = th.rand(4, 10)
>>> pseudo = th.ones(5, 3)
>>> pseudo = th.ones(5, 3)
...
...
python/dgl/nn/pytorch/conv/nnconv.py
View file @
ab0c0ec6
...
@@ -72,7 +72,7 @@ class NNConv(nn.Module):
...
@@ -72,7 +72,7 @@ class NNConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_feat = th.tensor(np.random.rand(2, 10).astype(np.float32))
>>> u_feat = th.tensor(np.random.rand(2, 10).astype(np.float32))
>>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
>>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
>>> conv = NNConv(10, 2, edge_func, 'mean')
>>> conv = NNConv(10, 2, edge_func, 'mean')
...
...
python/dgl/nn/pytorch/conv/sageconv.py
View file @
ab0c0ec6
...
@@ -83,7 +83,7 @@ class SAGEConv(nn.Module):
...
@@ -83,7 +83,7 @@ class SAGEConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = th.rand(2, 5)
>>> u_fea = th.rand(2, 5)
>>> v_fea = th.rand(4, 10)
>>> v_fea = th.rand(4, 10)
>>> conv = SAGEConv((5, 10), 2, 'mean')
>>> conv = SAGEConv((5, 10), 2, 'mean')
...
...
python/dgl/nn/tensorflow/conv/graphconv.py
View file @
ab0c0ec6
...
@@ -122,7 +122,7 @@ class GraphConv(layers.Layer):
...
@@ -122,7 +122,7 @@ class GraphConv(layers.Layer):
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> with tf.device("CPU:0"):
>>> with tf.device("CPU:0"):
... g = dgl.
bipartite(
(u, v))
... g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
... u_fea = tf.convert_to_tensor(np.random.rand(2, 5))
... u_fea = tf.convert_to_tensor(np.random.rand(2, 5))
... v_fea = tf.convert_to_tensor(np.random.rand(4, 5))
... v_fea = tf.convert_to_tensor(np.random.rand(4, 5))
... conv = GraphConv(5, 2, norm='both', weight=True, bias=True)
... conv = GraphConv(5, 2, norm='both', weight=True, bias=True)
...
...
python/dgl/nn/tensorflow/conv/sageconv.py
View file @
ab0c0ec6
...
@@ -76,7 +76,7 @@ class SAGEConv(layers.Layer):
...
@@ -76,7 +76,7 @@ class SAGEConv(layers.Layer):
>>> with tf.device("CPU:0"):
>>> with tf.device("CPU:0"):
>>> u = [0, 1, 0, 0, 1]
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.
bipartite(
(u, v))
>>> g = dgl.
heterograph({('_N', '_E', '_N'):
(u, v)
}
)
>>> u_fea = tf.convert_to_tensor(np.random.rand(2, 5))
>>> u_fea = tf.convert_to_tensor(np.random.rand(2, 5))
>>> v_fea = tf.convert_to_tensor(np.random.rand(4, 5))
>>> v_fea = tf.convert_to_tensor(np.random.rand(4, 5))
>>> conv = SAGEConv((5, 10), 2, 'mean')
>>> conv = SAGEConv((5, 10), 2, 'mean')
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment