Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
a7b5085a
Unverified
Commit
a7b5085a
authored
Nov 28, 2021
by
esang
Committed by
GitHub
Nov 28, 2021
Browse files
Add a note about the order of TUDataset (#3549)
parent
cd6d1138
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
16 deletions
+21
-16
python/dgl/data/tu.py
python/dgl/data/tu.py
+21
-16
No files found.
python/dgl/data/tu.py
View file @
a7b5085a
...
...
@@ -34,6 +34,14 @@ class LegacyTUDataset(DGLBuiltinDataset):
num_labels : int
Number of classes
Notes
-----
LegacyTUDataset uses provided node feature by default. If no feature provided, it uses one-hot node label instead.
If neither labels provided, it uses constant for node feature.
The dataset sorts graphs by their labels.
Shuffle is preferred before manual train/val split.
Examples
--------
>>> data = LegacyTUDataset('DD')
...
...
@@ -59,11 +67,6 @@ class LegacyTUDataset(DGLBuiltinDataset):
Graph(num_nodes=9539, num_edges=47382,
ndata_schemes={'feat': Scheme(shape=(89,), dtype=torch.float32), '_ID': Scheme(shape=(), dtype=torch.int64)}
edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64)})
Notes
-----
LegacyTUDataset uses provided node feature by default. If no feature provided, it uses one-hot node label instead.
If neither labels provided, it uses constant for node feature.
"""
_url
=
r
"https://www.chrsmrrs.com/graphkerneldatasets/{}.zip"
...
...
@@ -259,6 +262,18 @@ class TUDataset(DGLBuiltinDataset):
as per the original data. Other frameworks such as PyTorch Geometric removes the
duplicates by default. You can remove the duplicate edges with :func:`dgl.to_simple`.
Graphs may have node labels, node attributes, edge labels, and edge attributes,
varing from different dataset.
Labels are mapped to :math:`\lbrace 0,\cdots,n-1 \rbrace` where :math:`n` is the
number of labels (some datasets have raw labels :math:`\lbrace -1, 1 \rbrace` which
will be mapped to :math:`\lbrace 0, 1 \rbrace`). In previous versions, the minimum
label was added so that :math:`\lbrace -1, 1 \rbrace` was mapped to
:math:`\lbrace 0, 2 \rbrace`.
The dataset sorts graphs by their labels.
Shuffle is preferred before manual train/val split.
Examples
--------
>>> data = TUDataset('DD')
...
...
@@ -285,16 +300,6 @@ class TUDataset(DGLBuiltinDataset):
ndata_schemes={'node_labels': Scheme(shape=(1,), dtype=torch.int64), '_ID': Scheme(shape=(), dtype=torch.int64)}
edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64)})
Notes
-----
Graphs may have node labels, node attributes, edge labels, and edge attributes,
varing from different dataset.
Labels are mapped to :math:`\lbrace 0,\cdots,n-1 \rbrace` where :math:`n` is the
number of labels (some datasets have raw labels :math:`\lbrace -1, 1 \rbrace` which
will be mapped to :math:`\lbrace 0, 1 \rbrace`). In previous versions, the minimum
label was added so that :math:`\lbrace -1, 1 \rbrace` was mapped to
:math:`\lbrace 0, 2 \rbrace`.
"""
_url
=
r
"https://www.chrsmrrs.com/graphkerneldatasets/{}.zip"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment