Unverified Commit 9b62e8d0 authored by Hongzhi (Steve), Chen's avatar Hongzhi (Steve), Chen Committed by GitHub
Browse files

Revert "[Misc] Isort tutorials/large/L1_large_node_classification.py (#4721)" (#4741)

This reverts commit 9962b7bd.
parent 743516f3
......@@ -25,6 +25,9 @@ Sampling for GNN Training <L0_neighbor_sampling_overview>`.
# OGB already prepared the data as DGL graph.
#
import dgl
import torch
import numpy as np
from ogb.nodeproppred import DglNodePropPredDataset
dataset = DglNodePropPredDataset("ogbn-arxiv")
......@@ -37,8 +40,6 @@ device = "cpu" # change to 'cuda' for GPU
# simply get the graph and its node labels like this:
#
import dgl
graph, node_labels = dataset[0]
# Add reverse edges since ogbn-arxiv is unidirectional.
graph = dgl.add_reverse_edges(graph)
......@@ -165,8 +166,6 @@ print(
# the computation of the new features.
#
import torch
mfg_0_src = mfgs[0].srcdata[dgl.NID]
mfg_0_dst = mfgs[0].dstdata[dgl.NID]
print(mfg_0_src)
......@@ -184,7 +183,6 @@ print(torch.equal(mfg_0_src[: mfgs[0].num_dst_nodes()], mfg_0_dst))
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn import SAGEConv
......@@ -289,9 +287,8 @@ valid_dataloader = dgl.dataloading.DataLoader(
# It also saves the model with the best validation accuracy into a file.
#
import numpy as np
import sklearn.metrics
import tqdm
import sklearn.metrics
best_accuracy = 0
best_model_path = "model.pt"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment