[Documentation](https://docs.dgl.ai) | [DGL at a glance](https://docs.dgl.ai/tutorials/basics/1_first.html#sphx-glr-tutorials-basics-1-first-py) | [Model Tutorials](https://docs.dgl.ai/tutorials/models/index.html) | [Discussion Forum](https://discuss.dgl.ai)
...
...
@@ -89,7 +92,7 @@ class GATLayer(nn.Module):
```
## Performance and Scalability
**Microbenchmark on speed and memory usage**: While leaving tensor and autograd functions to backend frameworks (e.g. PyTorch, MXNet, and TensorFlow), DGL aggressively optimizes storage and computation with its own kernels. Here's a comparison to another popular package -- PyG. The short story is that raw speed is similar, but DGL has much better memory management.
**Microbenchmark on speed and memory usage**: While leaving tensor and autograd functions to backend frameworks (e.g. PyTorch, MXNet, and TensorFlow), DGL aggressively optimizes storage and computation with its own kernels. Here's a comparison to another popular package -- PyTorch Geometric (PyG). The short story is that raw speed is similar, but DGL has much better memory management.
| Dataset | Model | Accuracy | Time <br> PyG    DGL | Memory <br> PyG    DGL |