Unverified Commit 8a8f2b00 authored by peizhou001's avatar peizhou001 Committed by GitHub
Browse files

[Graphbolt]Windows bug workaround (#6611)


Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-21-218.ap-northeast-1.compute.internal>
parent 017b6bb3
...@@ -7,6 +7,8 @@ ...@@ -7,6 +7,8 @@
#include <graphbolt/unique_and_compact.h> #include <graphbolt/unique_and_compact.h>
#include <unordered_map>
#include "./concurrent_id_hash_map.h" #include "./concurrent_id_hash_map.h"
namespace graphbolt { namespace graphbolt {
...@@ -19,12 +21,59 @@ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> UniqueAndCompact( ...@@ -19,12 +21,59 @@ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> UniqueAndCompact(
torch::Tensor unique_ids; torch::Tensor unique_ids;
auto num_dst = unique_dst_ids.size(0); auto num_dst = unique_dst_ids.size(0);
torch::Tensor ids = torch::cat({unique_dst_ids, src_ids}); torch::Tensor ids = torch::cat({unique_dst_ids, src_ids});
// TODO: Remove this after windows concurrent bug being fixed.
#ifdef _MSC_VER
AT_DISPATCH_INTEGRAL_TYPES(
ids.scalar_type(), "unique_and_compact", ([&] {
std::unordered_map<scalar_t, scalar_t> id_map;
unique_ids = torch::empty_like(ids);
auto unique_ids_data = unique_ids.data_ptr<scalar_t>();
auto ids_data = ids.data_ptr<scalar_t>();
auto num_ids = ids.size(0);
scalar_t index = 0;
for (auto i = 0; i < num_ids; i++) {
auto id = ids_data[i];
if (id_map.count(id) == 0) {
unique_ids_data[index] = id;
id_map[id] = index++;
}
}
unique_ids = unique_ids.slice(0, 0, index);
compacted_src_ids = torch::empty_like(src_ids);
compacted_dst_ids = torch::empty_like(dst_ids);
num_ids = compacted_src_ids.size(0);
auto src_ids_data = src_ids.data_ptr<scalar_t>();
auto dst_ids_data = dst_ids.data_ptr<scalar_t>();
auto compacted_src_ids_data = compacted_src_ids.data_ptr<scalar_t>();
auto compacted_dst_ids_data = compacted_dst_ids.data_ptr<scalar_t>();
torch::parallel_for(0, num_ids, 256, [&](int64_t s, int64_t e) {
for (int64_t i = s; i < e; i++) {
auto it = id_map.find(src_ids_data[i]);
if (it == id_map.end())
throw std::out_of_range(
"Id not found: " + std::to_string(src_ids_data[i]));
compacted_src_ids_data[i] = it->second;
}
});
num_ids = compacted_dst_ids.size(0);
torch::parallel_for(0, num_ids, 256, [&](int64_t s, int64_t e) {
for (int64_t i = s; i < e; i++) {
auto it = id_map.find(dst_ids_data[i]);
if (it == id_map.end())
throw std::out_of_range(
"Id not found: " + std::to_string(dst_ids_data[i]));
compacted_dst_ids_data[i] = it->second;
}
});
}));
#else
AT_DISPATCH_INTEGRAL_TYPES(ids.scalar_type(), "unique_and_compact", ([&] { AT_DISPATCH_INTEGRAL_TYPES(ids.scalar_type(), "unique_and_compact", ([&] {
ConcurrentIdHashMap<scalar_t> id_map; ConcurrentIdHashMap<scalar_t> id_map;
unique_ids = id_map.Init(ids, num_dst); unique_ids = id_map.Init(ids, num_dst);
compacted_src_ids = id_map.MapIds(src_ids); compacted_src_ids = id_map.MapIds(src_ids);
compacted_dst_ids = id_map.MapIds(dst_ids); compacted_dst_ids = id_map.MapIds(dst_ids);
})); }));
#endif
return std::tuple(unique_ids, compacted_src_ids, compacted_dst_ids); return std::tuple(unique_ids, compacted_src_ids, compacted_dst_ids);
} }
} // namespace sampling } // namespace sampling
......
...@@ -24,7 +24,6 @@ def test_node_classification(): ...@@ -24,7 +24,6 @@ def test_node_classification():
assert float(stdout[-5:]) > 0.60 assert float(stdout[-5:]) > 0.60
@unittest.skipIf(os.name == "nt", reason="TODO(6575): Fix the test on Windows")
def test_link_prediction(): def test_link_prediction():
script = os.path.join(EXAMPLE_ROOT, "link_prediction.py") script = os.path.join(EXAMPLE_ROOT, "link_prediction.py")
out = subprocess.run(["python", str(script)], capture_output=True) out = subprocess.run(["python", str(script)], capture_output=True)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment