"tests/python/common/function/test_basics.py" did not exist on "e2926544b65d434d30695633f24cac137282c287"
Unverified Commit 8a07ab77 authored by Minjie Wang's avatar Minjie Wang Committed by GitHub
Browse files

[Doc] Tutorials re-organization (#2683)

* reorg

* change titles

* rm some stale API doc; minor fix

* fix docs

* add warning

* rm new-tutorial run in ci

* lint
parent 0fc64952
""" """
.. _model-tree-lstm: .. _model-tree-lstm:
Tutorial: Tree-LSTM in DGL Tree-LSTM in DGL
========================== ==========================
**Author**: Zihao Ye, Qipeng Guo, `Minjie Wang **Author**: Zihao Ye, Qipeng Guo, `Minjie Wang
<https://jermainewang.github.io/>`_, `Jake Zhao <https://jermainewang.github.io/>`_, `Jake Zhao
<https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang
.. warning::
The tutorial aims at gaining insights into the paper, with code as a mean
of explanation. The implementation thus is NOT optimized for running
efficiency. For recommended implementation, please refer to the `official
examples <https://github.com/dmlc/dgl/tree/master/examples>`_.
""" """
############################################################################## ##############################################################################
......
.. _tutorials2-index: .. _tutorials2-index:
Batching many small graphs Batching many small graphs
============================== -------------------------------
* **Tree-LSTM** `[paper] <https://arxiv.org/abs/1503.00075>`__ `[tutorial] * **Tree-LSTM** `[paper] <https://arxiv.org/abs/1503.00075>`__ `[tutorial]
<2_small_graph/3_tree-lstm.html>`__ `[PyTorch code] <2_small_graph/3_tree-lstm.html>`__ `[PyTorch code]
......
""" """
.. _model-dgmg: .. _model-dgmg:
Tutorial: Generative models of graphs Generative Models of Graphs
=========================================== ===========================================
**Author**: `Mufei Li <https://github.com/mufeili>`_, **Author**: `Mufei Li <https://github.com/mufeili>`_,
`Lingfan Yu <https://github.com/ylfdq1118>`_, Zheng Zhang `Lingfan Yu <https://github.com/ylfdq1118>`_, Zheng Zhang
.. warning::
The tutorial aims at gaining insights into the paper, with code as a mean
of explanation. The implementation thus is NOT optimized for running
efficiency. For recommended implementation, please refer to the `official
examples <https://github.com/dmlc/dgl/tree/master/examples>`_.
""" """
############################################################################## ##############################################################################
......
.. _tutorials3-index: .. _tutorials3-index:
Generative models Generative models
================== --------------------
* **DGMG** `[paper] <https://arxiv.org/abs/1803.03324>`__ `[tutorial] * **DGMG** `[paper] <https://arxiv.org/abs/1803.03324>`__ `[tutorial]
<3_generative_model/5_dgmg.html>`__ `[PyTorch code] <3_generative_model/5_dgmg.html>`__ `[PyTorch code]
...@@ -12,10 +12,3 @@ Generative models ...@@ -12,10 +12,3 @@ Generative models
sample has a dynamic, probability-driven structure that is not available sample has a dynamic, probability-driven structure that is not available
before training. You can progressively leverage intra- and before training. You can progressively leverage intra- and
inter-graph parallelism to steadily improve the performance. inter-graph parallelism to steadily improve the performance.
* **JTNN** `[paper] <https://arxiv.org/abs/1802.04364>`__ `[PyTorch code]
<https://github.com/dmlc/dgl/tree/master/examples/pytorch/jtnn>`__:
This network generates molecular graphs using the framework of
a variational auto-encoder. The junction tree neural network (JTNN) builds
structure hierarchically. In the case of molecular graphs, it uses a junction tree as
the middle scaffolding.
""" """
.. _model-capsule: .. _model-capsule:
Capsule network tutorial Capsule Network
=========================== ===========================
**Author**: Jinjing Zhou, `Jake Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang, Jinyang Li **Author**: Jinjing Zhou, `Jake Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang, Jinyang Li
...@@ -9,6 +9,14 @@ Capsule network tutorial ...@@ -9,6 +9,14 @@ Capsule network tutorial
In this tutorial, you learn how to describe one of the more classical models in terms of graphs. The approach In this tutorial, you learn how to describe one of the more classical models in terms of graphs. The approach
offers a different perspective. The tutorial describes how to implement a Capsule model for the offers a different perspective. The tutorial describes how to implement a Capsule model for the
`capsule network <http://arxiv.org/abs/1710.09829>`__. `capsule network <http://arxiv.org/abs/1710.09829>`__.
.. warning::
The tutorial aims at gaining insights into the paper, with code as a mean
of explanation. The implementation thus is NOT optimized for running
efficiency. For recommended implementation, please refer to the `official
examples <https://github.com/dmlc/dgl/tree/master/examples>`_.
""" """
####################################################################################### #######################################################################################
# Key ideas of Capsule # Key ideas of Capsule
......
""" """
.. _model-transformer: .. _model-transformer:
Transformer tutorial Transformer as a Graph Neural Network
==================== ======================================
**Author**: Zihao Ye, Jinjing Zhou, Qipeng Guo, Quan Gan, Zheng Zhang **Author**: Zihao Ye, Jinjing Zhou, Qipeng Guo, Quan Gan, Zheng Zhang
.. warning::
The tutorial aims at gaining insights into the paper, with code as a mean
of explanation. The implementation thus is NOT optimized for running
efficiency. For recommended implementation, please refer to the `official
examples <https://github.com/dmlc/dgl/tree/master/examples>`_.
""" """
################################################################################################ ################################################################################################
# In this tutorial, you learn about a simplified implementation of the Transformer model. # In this tutorial, you learn about a simplified implementation of the Transformer model.
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
Revisit classic models from a graph perspective Revisit classic models from a graph perspective
==================================== -------------------------------------------------------
* **Capsule** `[paper] <https://arxiv.org/abs/1710.09829>`__ `[tutorial] * **Capsule** `[paper] <https://arxiv.org/abs/1710.09829>`__ `[tutorial]
<4_old_wines/2_capsule.html>`__ `[PyTorch code] <4_old_wines/2_capsule.html>`__ `[PyTorch code]
......
Paper Study with DGL
=========================================
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment