Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
704bcaf6
Unverified
Commit
704bcaf6
authored
Feb 19, 2023
by
Hongzhi (Steve), Chen
Committed by
GitHub
Feb 19, 2023
Browse files
examples (#5323)
Co-authored-by:
Ubuntu
<
ubuntu@ip-172-31-28-63.ap-northeast-1.compute.internal
>
parent
6bc82161
Changes
332
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
62 additions
and
59 deletions
+62
-59
examples/pytorch/arma/citation.py
examples/pytorch/arma/citation.py
+2
-2
examples/pytorch/arma/model.py
examples/pytorch/arma/model.py
+2
-2
examples/pytorch/bgnn/BGNN.py
examples/pytorch/bgnn/BGNN.py
+0
-1
examples/pytorch/bgnn/run.py
examples/pytorch/bgnn/run.py
+9
-7
examples/pytorch/bgrl/eval_function.py
examples/pytorch/bgrl/eval_function.py
+2
-3
examples/pytorch/bgrl/main.py
examples/pytorch/bgrl/main.py
+14
-7
examples/pytorch/bgrl/model.py
examples/pytorch/bgrl/model.py
+3
-3
examples/pytorch/bgrl/utils.py
examples/pytorch/bgrl/utils.py
+8
-3
examples/pytorch/capsule/DGLDigitCapsule.py
examples/pytorch/capsule/DGLDigitCapsule.py
+2
-3
examples/pytorch/capsule/DGLRoutingLayer.py
examples/pytorch/capsule/DGLRoutingLayer.py
+1
-2
examples/pytorch/capsule/simple_routing.py
examples/pytorch/capsule/simple_routing.py
+1
-2
examples/pytorch/caregnn/main.py
examples/pytorch/caregnn/main.py
+2
-2
examples/pytorch/caregnn/main_sampling.py
examples/pytorch/caregnn/main_sampling.py
+3
-3
examples/pytorch/caregnn/model.py
examples/pytorch/caregnn/model.py
+1
-2
examples/pytorch/caregnn/model_sampling.py
examples/pytorch/caregnn/model_sampling.py
+2
-3
examples/pytorch/cluster_gcn/cluster_gcn.py
examples/pytorch/cluster_gcn/cluster_gcn.py
+3
-3
examples/pytorch/compGCN/data_loader.py
examples/pytorch/compGCN/data_loader.py
+2
-2
examples/pytorch/compGCN/main.py
examples/pytorch/compGCN/main.py
+2
-3
examples/pytorch/compGCN/models.py
examples/pytorch/compGCN/models.py
+2
-4
examples/pytorch/compGCN/utils.py
examples/pytorch/compGCN/utils.py
+1
-2
No files found.
examples/pytorch/arma/citation.py
View file @
704bcaf6
...
...
@@ -7,10 +7,10 @@ import numpy as np
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
from
model
import
ARMA4NC
from
tqdm
import
trange
from
dgl.data
import
CiteseerGraphDataset
,
CoraGraphDataset
,
PubmedGraphDataset
from
model
import
ARMA4NC
from
tqdm
import
trange
def
main
(
args
):
...
...
examples/pytorch/arma/model.py
View file @
704bcaf6
import
math
import
dgl.function
as
fn
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
dgl.function
as
fn
def
glorot
(
tensor
):
if
tensor
is
not
None
:
...
...
examples/pytorch/bgnn/BGNN.py
View file @
704bcaf6
...
...
@@ -188,7 +188,6 @@ class BGNNPredictor:
def
init_optimizer
(
self
,
node_features
,
optimize_node_features
,
learning_rate
):
params
=
[
self
.
model
.
parameters
()]
if
optimize_node_features
:
params
.
append
([
node_features
])
...
...
examples/pytorch/bgnn/run.py
View file @
704bcaf6
...
...
@@ -7,15 +7,17 @@ import torch
import
torch.nn.functional
as
F
from
BGNN
import
BGNNPredictor
from
category_encoders
import
CatBoostEncoder
from
sklearn
import
preprocessing
from
torch.nn
import
ELU
,
Dropout
,
Linear
,
ReLU
,
Sequential
from
dgl.data.utils
import
load_graphs
from
dgl.nn.pytorch
import
AGNNConv
as
AGNNConvDGL
from
dgl.nn.pytorch
import
APPNPConv
from
dgl.nn.pytorch
import
ChebConv
as
ChebConvDGL
from
dgl.nn.pytorch
import
GATConv
as
GATConvDGL
from
dgl.nn.pytorch
import
GraphConv
from
dgl.nn.pytorch
import
(
AGNNConv
as
AGNNConvDGL
,
APPNPConv
,
ChebConv
as
ChebConvDGL
,
GATConv
as
GATConvDGL
,
GraphConv
,
)
from
sklearn
import
preprocessing
from
torch.nn
import
Dropout
,
ELU
,
Linear
,
ReLU
,
Sequential
class
GNNModelDGL
(
torch
.
nn
.
Module
):
...
...
examples/pytorch/bgrl/eval_function.py
View file @
704bcaf6
...
...
@@ -2,10 +2,9 @@ import numpy as np
import
torch
from
sklearn
import
metrics
from
sklearn.linear_model
import
LogisticRegression
from
sklearn.model_selection
import
(
GridSearchCV
,
ShuffleSplit
,
train_test_split
)
from
sklearn.model_selection
import
GridSearchCV
,
ShuffleSplit
,
train_test_split
from
sklearn.multiclass
import
OneVsRestClassifier
from
sklearn.preprocessing
import
OneHotEncoder
,
normalize
from
sklearn.preprocessing
import
normalize
,
OneHotEncoder
def
fit_logistic_regression
(
X
,
y
,
data_random_seed
=
1
,
repeat
=
1
):
...
...
examples/pytorch/bgrl/main.py
View file @
704bcaf6
...
...
@@ -2,20 +2,27 @@ import copy
import
os
import
warnings
import
dgl
import
numpy
as
np
import
torch
from
eval_function
import
(
fit_logistic_regression
,
fit_logistic_regression_preset_splits
,
fit_ppi_linear
)
from
model
import
(
BGRL
,
GCN
,
GraphSAGE_GCN
,
MLP_Predictor
,
compute_representations
)
from
eval_function
import
(
fit_logistic_regression
,
fit_logistic_regression_preset_splits
,
fit_ppi_linear
,
)
from
model
import
(
BGRL
,
compute_representations
,
GCN
,
GraphSAGE_GCN
,
MLP_Predictor
,
)
from
torch.nn.functional
import
cosine_similarity
from
torch.optim
import
AdamW
from
tqdm
import
tqdm
from
utils
import
CosineDecayScheduler
,
get_dataset
,
get_graph_drop_transform
import
dgl
warnings
.
filterwarnings
(
"ignore"
)
...
...
examples/pytorch/bgrl/model.py
View file @
704bcaf6
import
copy
import
dgl
import
torch
from
dgl.nn.pytorch.conv
import
GraphConv
,
SAGEConv
from
torch
import
nn
from
torch.nn
import
BatchNorm1d
,
Parameter
from
torch.nn.init
import
ones_
,
zeros_
import
dgl
from
dgl.nn.pytorch.conv
import
GraphConv
,
SAGEConv
class
LayerNorm
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
eps
=
1e-5
,
affine
=
True
):
...
...
examples/pytorch/bgrl/utils.py
View file @
704bcaf6
...
...
@@ -3,9 +3,14 @@ import copy
import
numpy
as
np
import
torch
from
dgl.data
import
(
AmazonCoBuyComputerDataset
,
AmazonCoBuyPhotoDataset
,
CoauthorCSDataset
,
CoauthorPhysicsDataset
,
PPIDataset
,
WikiCSDataset
)
from
dgl.data
import
(
AmazonCoBuyComputerDataset
,
AmazonCoBuyPhotoDataset
,
CoauthorCSDataset
,
CoauthorPhysicsDataset
,
PPIDataset
,
WikiCSDataset
,
)
from
dgl.dataloading
import
GraphDataLoader
from
dgl.transforms
import
Compose
,
DropEdge
,
FeatMask
,
RowFeatNormalizer
...
...
examples/pytorch/capsule/DGLDigitCapsule.py
View file @
704bcaf6
import
dgl
import
dgl.function
as
fn
import
torch
from
DGLRoutingLayer
import
DGLRoutingLayer
from
torch
import
nn
from
torch.nn
import
functional
as
F
import
dgl
import
dgl.function
as
fn
class
DGLDigitCapsuleLayer
(
nn
.
Module
):
def
__init__
(
...
...
examples/pytorch/capsule/DGLRoutingLayer.py
View file @
704bcaf6
import
dgl
import
torch
as
th
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
dgl
class
DGLRoutingLayer
(
nn
.
Module
):
def
__init__
(
self
,
in_nodes
,
out_nodes
,
f_size
,
batch_size
=
0
,
device
=
"cpu"
):
...
...
examples/pytorch/capsule/simple_routing.py
View file @
704bcaf6
import
dgl
import
torch
as
th
import
torch.nn
as
nn
from
DGLRoutingLayer
import
DGLRoutingLayer
from
torch.nn
import
functional
as
F
import
dgl
g
=
dgl
.
DGLGraph
()
g
.
graph_data
=
{}
...
...
examples/pytorch/caregnn/main.py
View file @
704bcaf6
import
argparse
import
dgl
import
torch
as
th
import
torch.optim
as
optim
from
model
import
CAREGNN
...
...
@@ -7,8 +9,6 @@ from sklearn.metrics import recall_score, roc_auc_score
from
torch.nn.functional
import
softmax
from
utils
import
EarlyStopping
import
dgl
def
main
(
args
):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
...
...
examples/pytorch/caregnn/main_sampling.py
View file @
704bcaf6
import
argparse
import
dgl
import
torch
as
th
import
torch.optim
as
optim
from
model_sampling
import
CAREGNN
,
CARESampler
,
_l1_dist
from
model_sampling
import
_l1_dist
,
CAREGNN
,
CARESampler
from
sklearn.metrics
import
recall_score
,
roc_auc_score
from
torch.nn.functional
import
softmax
from
utils
import
EarlyStopping
import
dgl
def
evaluate
(
model
,
loss_fn
,
dataloader
,
device
=
"cpu"
):
loss
=
0
...
...
examples/pytorch/caregnn/model.py
View file @
704bcaf6
import
dgl.function
as
fn
import
numpy
as
np
import
torch
as
th
import
torch.nn
as
nn
import
dgl.function
as
fn
class
CAREConv
(
nn
.
Module
):
"""One layer of CARE-GNN."""
...
...
examples/pytorch/caregnn/model_sampling.py
View file @
704bcaf6
import
dgl
import
dgl.function
as
fn
import
numpy
as
np
import
torch
as
th
import
torch.nn
as
nn
import
dgl
import
dgl.function
as
fn
def
_l1_dist
(
edges
):
# formula 2
...
...
examples/pytorch/cluster_gcn/cluster_gcn.py
View file @
704bcaf6
import
time
import
dgl
import
dgl.nn
as
dglnn
import
numpy
as
np
import
torch
import
torch.nn
as
nn
...
...
@@ -7,9 +10,6 @@ import torch.nn.functional as F
import
torchmetrics.functional
as
MF
from
ogb.nodeproppred
import
DglNodePropPredDataset
import
dgl
import
dgl.nn
as
dglnn
class
SAGE
(
nn
.
Module
):
def
__init__
(
self
,
in_feats
,
n_hidden
,
n_classes
):
...
...
examples/pytorch/compGCN/data_loader.py
View file @
704bcaf6
from
collections
import
defaultdict
as
ddict
import
dgl
import
numpy
as
np
import
torch
from
ordered_set
import
OrderedSet
from
torch.utils.data
import
DataLoader
,
Dataset
import
dgl
class
TrainDataset
(
Dataset
):
"""
...
...
examples/pytorch/compGCN/main.py
View file @
704bcaf6
import
argparse
from
time
import
time
import
dgl.function
as
fn
import
numpy
as
np
import
torch
as
th
import
torch.nn
as
nn
...
...
@@ -10,8 +12,6 @@ from data_loader import Data
from
models
import
CompGCN_ConvE
from
utils
import
in_out_norm
import
dgl.function
as
fn
# predict the tail for (head, rel, -1) or head for (-1, rel, tail)
def
predict
(
model
,
graph
,
device
,
data_iter
,
split
=
"valid"
,
mode
=
"tail"
):
...
...
@@ -96,7 +96,6 @@ def evaluate(model, graph, device, data_iter, split="valid"):
def
main
(
args
):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# check cuda
if
args
.
gpu
>=
0
and
th
.
cuda
.
is_available
():
...
...
examples/pytorch/compGCN/models.py
View file @
704bcaf6
import
dgl
import
dgl.function
as
fn
import
torch
as
th
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.optim
as
optim
from
utils
import
ccorr
import
dgl
import
dgl.function
as
fn
class
CompGraphConv
(
nn
.
Module
):
"""One layer of CompGCN."""
...
...
@@ -41,7 +40,6 @@ class CompGraphConv(nn.Module):
nn
.
init
.
xavier_normal_
(
self
.
loop_rel
)
def
forward
(
self
,
g
,
n_in_feats
,
r_feats
):
with
g
.
local_scope
():
# Assign values to source nodes. In a homogeneous graph, this is equal to
# assigning them to all nodes.
...
...
examples/pytorch/compGCN/utils.py
View file @
704bcaf6
...
...
@@ -2,9 +2,8 @@
# <https://github.com/malllabiisc/CompGCN/blob/master/helper.py>.
# It implements the operation of circular convolution in the ccorr function and an additional in_out_norm function for norm computation.
import
torch
as
th
import
dgl
import
torch
as
th
def
com_mult
(
a
,
b
):
...
...
Prev
1
2
3
4
5
6
7
…
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment