Unverified Commit 704bcaf6 authored by Hongzhi (Steve), Chen's avatar Hongzhi (Steve), Chen Committed by GitHub
Browse files
parent 6bc82161
......@@ -2,17 +2,17 @@ import logging
import time
from operator import attrgetter, itemgetter
import dgl
import mxnet as mx
import numpy as np
from dgl.nn.mxnet import GraphConv
from dgl.utils import toindex
from gluoncv.data.batchify import Pad
from gluoncv.model_zoo import get_model
from mxnet import gluon, nd
from mxnet.gluon import nn
import dgl
from dgl.nn.mxnet import GraphConv
from dgl.utils import toindex
def iou(boxA, boxB):
# determine the (x, y)-coordinates of the intersection rectangle
......
import dgl
import mxnet as mx
import numpy as np
import dgl
from dgl.utils import toindex
......
......@@ -6,7 +6,7 @@ import mxnet as mx
import numpy as np
from data import *
from gluoncv.data.batchify import Pad
from model import RelDN, faster_rcnn_resnet101_v1d_custom
from model import faster_rcnn_resnet101_v1d_custom, RelDN
from mxnet import gluon, nd
from utils import *
......
......@@ -9,16 +9,20 @@ import argparse
import math
import time
import dgl
import mxnet as mx
import numpy as np
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
from dgl.nn.mxnet.conv import SGConv
from mxnet import gluon, nd
from mxnet.gluon import nn
import dgl
from dgl.data import (CiteseerGraphDataset, CoraGraphDataset,
PubmedGraphDataset, register_data_args)
from dgl.nn.mxnet.conv import SGConv
def evaluate(model, g, features, labels, mask):
pred = model(g, features).argmax(axis=1)
......
......@@ -4,11 +4,10 @@ References:
- Topology Adaptive Graph Convolutional Networks
- Paper: https://arxiv.org/abs/1710.10370
"""
import mxnet as mx
from mxnet import gluon
import dgl
import mxnet as mx
from dgl.nn.mxnet import TAGConv
from mxnet import gluon
class TAGCN(gluon.Block):
......
import argparse
import time
import dgl
import mxnet as mx
import networkx as nx
import numpy as np
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
from mxnet import gluon
from tagcn import TAGCN
import dgl
from dgl.data import (CiteseerGraphDataset, CoraGraphDataset,
PubmedGraphDataset, register_data_args)
def evaluate(model, features, labels, mask):
pred = model(features).argmax(axis=1)
......
......@@ -8,14 +8,13 @@ import zipfile
os.environ["DGLBACKEND"] = "mxnet"
os.environ["MXNET_GPU_MEM_POOL_TYPE"] = "Round"
import dgl
import dgl.data as data
import mxnet as mx
import numpy as np
from mxnet import gluon
from tree_lstm import TreeLSTM
import dgl
import dgl.data as data
SSTBatch = collections.namedtuple(
"SSTBatch", ["graph", "mask", "wordid", "label"]
)
......
......@@ -5,13 +5,13 @@ https://arxiv.org/abs/1503.00075
import itertools
import time
import dgl
import mxnet as mx
import networkx as nx
import numpy as np
from mxnet import gluon
import dgl
class _TreeLSTMCellNodeFunc(gluon.HybridBlock):
def hybrid_forward(self, F, iou, b_iou, c):
......
......@@ -9,8 +9,7 @@ import numpy as np
import torch
from gensim.models.keyedvectors import Vocab
from six import iteritems
from sklearn.metrics import (auc, f1_score, precision_recall_curve,
roc_auc_score)
from sklearn.metrics import auc, f1_score, precision_recall_curve, roc_auc_score
def parse_args():
......
import collections
from torch.utils.data import DataLoader, Dataset
import dgl
from dgl.data import PPIDataset
from torch.utils.data import DataLoader, Dataset
# implement the collate_fn for dgl graph data class
PPIBatch = collections.namedtuple("PPIBatch", ["graph", "label"])
......
import argparse
import os
import dgl
import dgl.function as fn
import numpy as np
import torch
import torch.nn as nn
......@@ -8,9 +11,6 @@ import torch.nn.functional as F
from data_loader import load_PPI
from utils import evaluate_f1_score
import dgl
import dgl.function as fn
class GNNFiLMLayer(nn.Module):
def __init__(self, in_size, out_size, etypes, dropout=0.1):
......
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
class NGCFLayer(nn.Module):
def __init__(self, in_size, out_size, norm_dict, dropout):
......@@ -31,7 +30,6 @@ class NGCFLayer(nn.Module):
self.norm_dict = norm_dict
def forward(self, g, feat_dict):
funcs = {} # message and reduce functions dict
# for each type of edges, compute messages and reduce them all
for srctype, etype, dsttype in g.canonical_etypes:
......
......@@ -3,10 +3,10 @@
# It implements the data processing and graph construction.
import random as rd
import numpy as np
import dgl
import numpy as np
class Data(object):
def __init__(self, path, batch_size):
......
import os
import warnings
import dgl
import numpy as np
import torch
import torch.nn as nn
......@@ -8,8 +10,6 @@ from model import PGNN
from sklearn.metrics import roc_auc_score
from utils import get_dataset, preselect_anchor
import dgl
warnings.filterwarnings("ignore")
......
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
class PGNN_layer(nn.Module):
def __init__(self, input_dim, output_dim):
......
......@@ -17,7 +17,7 @@ def get_communities(remove_feature):
# Randomly rewire 1% edges
node_list = list(graph.nodes)
for (u, v) in graph.edges():
for u, v in graph.edges():
if random.random() < 0.01:
x = random.choice(node_list)
if graph.has_edge(u, x):
......
import dgl
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
from dgl.nn.pytorch import GATConv
......
......@@ -2,12 +2,12 @@ import os
import pickle as pkl
import random
import dgl
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
import dgl
# Split data into train/eval/test
def split_data(hg, etype_name):
......@@ -301,7 +301,6 @@ def process_movielens(root_path):
class MyDataset(Dataset):
def __init__(self, triple):
self.triple = triple
self.len = self.triple.shape[0]
......
import argparse
import pickle as pkl
import dgl
import numpy as np
import torch
import torch.nn as nn
......@@ -14,8 +16,6 @@ from utils import (
evaluate_logloss,
)
import dgl
def main(args):
# step 1: Check device
......
import argparse
import time
import dgl
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from appnp import APPNP
import dgl
from dgl.data import (CiteseerGraphDataset, CoraGraphDataset,
PubmedGraphDataset, register_data_args)
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
def evaluate(model, features, labels, mask):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment