Commit 6c3dba86 authored by Giuseppe Futia's avatar Giuseppe Futia Committed by Lingfan Yu
Browse files

[Tutorial] Update prerequisites of README (#380)

* Update prerequisites of README

* dependencies for pytorch models

* dependencies for mxnet models

* minor
parent 29dd22e6
......@@ -7,8 +7,17 @@ Graph Attention Networks (GAT)
Note that the original code is implemented with Tensorflow for the paper.
### Dependencies
* MXNet nightly build
* requests
## Usage (make sure that DGLBACKEND is changed into mxnet)
```bash
pip install mxnet --pre
pip install requests
```
### Usage (make sure that DGLBACKEND is changed into mxnet)
```bash
DGLBACKEND=mxnet python gat_batch.py --dataset cora --gpu 0 --num-heads 8
```
......@@ -4,11 +4,13 @@ Graph Convolutional Networks (GCN)
Paper link: [https://arxiv.org/abs/1609.02907](https://arxiv.org/abs/1609.02907)
Author's code repo: [https://github.com/tkipf/gcn](https://github.com/tkipf/gcn)
Requirements
Dependencies
------------
- MXNet nightly build
- requests
``bash
pip install mxnet --pre
pip install requests
``
......
......@@ -4,12 +4,19 @@
* Author's code for entity classification: [https://github.com/tkipf/relational-gcn](https://github.com/tkipf/relational-gcn)
* Author's code for link prediction: [https://github.com/MichSchli/RelationPrediction](https://github.com/MichSchli/RelationPrediction)
### Prerequisites
### Dependencies
Two extra python packages are needed for this example:
- MXNet nightly build
- requests
- rdflib
- pandas
```bash
pip install mxnet --pre
pip install requests rdflib pandas
```
Example code was tested with rdflib 4.2.2 and pandas 0.23.4
### Entity Classification
......
......@@ -4,6 +4,16 @@ Benchmark SSE on multi-GPUs
Paper link:
[http://proceedings.mlr.press/v80/dai18a/dai18a.pdf](http://proceedings.mlr.press/v80/dai18a/dai18a.pdf)
Dependencies
-------------
* MXNet nightly build
* requests
```bash
pip install mxnet --pre
pip install requests
```
Use a small embedding
---------------------
......
......@@ -6,6 +6,16 @@ This is a re-implementation of the following paper:
The provided implementation can achieve a test accuracy of 51.72 which is comparable with the result reported in the original paper: 51.0(±0.5).
## Dependencies
* MXNet nightly build
* requests
* nltk
```bash
pip install mxnet --pre
pip install requests nltk
```
## Data
The script will download the [SST dataset] (http://nlp.stanford.edu/sentiment/index.html) and the GloVe 840B.300d embedding automatically if `--use-glove` is specified (note: download may take a while).
......
......@@ -4,7 +4,17 @@ DGL implementation of Capsule Network
This repo implements Hinton and his team's [Capsule Network](https://arxiv.org/abs/1710.09829).
Only margin loss is implemented, for simplicity to understand the DGL.
## Training& Evaluation
Dependencies
--------------
* PyTorch 0.4.1+
* torchvision
```bash
pip install torch torchvision
```
Training & Evaluation
----------------------
```bash
# Run with default config
python main.py
......
......@@ -3,7 +3,7 @@
This is an implementation of [Learning Deep Generative Models of Graphs](https://arxiv.org/pdf/1803.03324.pdf) by
Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter Battaglia.
## Dependency
## Dependencies
- Python 3.5.2
- [Pytorch 0.4.1](https://pytorch.org/)
- [Matplotlib 2.2.2](https://matplotlib.org/)
......
......@@ -7,7 +7,7 @@ Graph Attention Networks (GAT)
- Popular pytorch implementation:
[https://github.com/Diego999/pyGAT](https://github.com/Diego999/pyGAT).
Requirements
Dependencies
------------
- torch v1.0: the autograd support for sparse mm is only available in v1.0.
- requests
......
......@@ -5,12 +5,13 @@ Graph Convolutional Networks (GCN)
- Author's code repo: [https://github.com/tkipf/gcn](https://github.com/tkipf/gcn). Note that the original code is
implemented with Tensorflow for the paper.
Requirements
Dependencies
------------
- PyTorch 0.4.1+
- requests
``bash
pip install requests
pip install torch requests
``
Codes
......
Junction Tree VAE - example for training
===
==========================================
This is a direct modification from https://github.com/wengong-jin/icml18-jtnn
You need to have RDKit installed.
Dependencies
--------------
* PyTorch 0.4.1+
* RDKit
* requests
How to run
-----------
To run the model, use
```
......
......@@ -7,6 +7,18 @@ Author's code repo: [https://github.com/joanbruna/GNN_community](https://github.
This folder contains a DGL implementation of the CDGNN model.
Dependencies
--------------
* PyTorch 0.4.1+
* requests
```bash
pip install torch requests
```
How to run
----------
An experiment on the Stochastic Block Model in default settings can be run with
```bash
......
......@@ -4,11 +4,15 @@
* Author's code for entity classification: [https://github.com/tkipf/relational-gcn](https://github.com/tkipf/relational-gcn)
* Author's code for link prediction: [https://github.com/MichSchli/RelationPrediction](https://github.com/MichSchli/RelationPrediction)
### Prerequisites
Two extra python packages are needed for this example:
### Dependencies
* PyTorch 0.4.1+
* requests
* rdflib
* pandas
- rdflib
- pandas
```
pip install requests torch rdflib pandas
```
Example code was tested with rdflib 4.2.2 and pandas 0.23.4
......
......@@ -3,11 +3,12 @@ In this example we implement the [Transformer](https://arxiv.org/pdf/1706.03762.
The folder contains training module and inferencing module (beam decoder) for Transformer and training module for Universal Transformer
## Requirements
## Dependencies
- PyTorch 0.4.1+
- networkx
- tqdm
- requests
## Usage
......
......@@ -13,6 +13,15 @@ wget http://nlp.stanford.edu/data/glove.840B.300d.zip
unzip glove.840B.300d.zip
```
## Dependencies
* PyTorch 0.4.1+
* requests
* nltk
```
pip install torch requests nltk
```
## Usage
```
python train.py --gpu 0
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment