Unverified Commit 683e1f45 authored by Rhett Ying's avatar Rhett Ying Committed by GitHub
Browse files

[doc] remove unnecessary tutorials (#6621)

parent a40672a4
"""
Writing GNN Modules for Stochastic GNN Training
===============================================
All GNN modules DGL provides support stochastic GNN training. This
tutorial teaches you how to write your own graph neural network module
for stochastic GNN training. It assumes that
1. You know :doc:`how to write GNN modules for full graph
training <../blitz/3_message_passing>`.
2. You know :doc:`how stochastic GNN training pipeline
works <L1_large_node_classification>`.
"""
import os
os.environ["DGLBACKEND"] = "pytorch"
import dgl
import numpy as np
import torch
from ogb.nodeproppred import DglNodePropPredDataset
dataset = DglNodePropPredDataset("ogbn-arxiv")
device = "cpu" # change to 'cuda' for GPU
graph, node_labels = dataset[0]
# Add reverse edges since ogbn-arxiv is unidirectional.
graph = dgl.add_reverse_edges(graph)
graph.ndata["label"] = node_labels[:, 0]
idx_split = dataset.get_idx_split()
train_nids = idx_split["train"]
node_features = graph.ndata["feat"]
sampler = dgl.dataloading.MultiLayerNeighborSampler([4, 4])
train_dataloader = dgl.dataloading.DataLoader(
graph,
train_nids,
sampler,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=0,
)
input_nodes, output_nodes, mfgs = next(iter(train_dataloader))
######################################################################
# DGL Bipartite Graph Introduction
# --------------------------------
#
# In the previous tutorials, you have seen the concept *message flow graph*
# (MFG), where nodes are divided into two parts. It is a kind of (directional)
# bipartite graph.
# This section introduces how you can manipulate (directional) bipartite
# graphs.
#
# You can access the source node features and destination node features via
# ``srcdata`` and ``dstdata`` attributes:
#
mfg = mfgs[0]
print(mfg.srcdata)
print(mfg.dstdata)
######################################################################
# It also has ``num_src_nodes`` and ``num_dst_nodes`` functions to query
# how many source nodes and destination nodes exist in the bipartite graph:
#
print(mfg.num_src_nodes(), mfg.num_dst_nodes())
######################################################################
# You can assign features to ``srcdata`` and ``dstdata`` just as what you
# will do with ``ndata`` on the graphs you have seen earlier:
#
mfg.srcdata["x"] = torch.zeros(mfg.num_src_nodes(), mfg.num_dst_nodes())
dst_feat = mfg.dstdata["feat"]
######################################################################
# Also, since the bipartite graphs are constructed by DGL, you can
# retrieve the source node IDs (i.e. those that are required to compute the
# output) and destination node IDs (i.e. those whose representations the
# current GNN layer should compute) as follows.
#
mfg.srcdata[dgl.NID], mfg.dstdata[dgl.NID]
######################################################################
# Writing GNN Modules for Bipartite Graphs for Stochastic Training
# ----------------------------------------------------------------
#
######################################################################
# Recall that the MFGs yielded by the ``DataLoader``
# have the property that the first few source nodes are
# always identical to the destination nodes:
#
# |image1|
#
# .. |image1| image:: https://data.dgl.ai/tutorial/img/bipartite.gif
#
print(
torch.equal(
mfg.srcdata[dgl.NID][: mfg.num_dst_nodes()], mfg.dstdata[dgl.NID]
)
)
######################################################################
# Suppose you have obtained the source node representations
# :math:`h_u^{(l-1)}`:
#
mfg.srcdata["h"] = torch.randn(mfg.num_src_nodes(), 10)
######################################################################
# Recall that DGL provides the `update_all` interface for expressing how
# to compute messages and how to aggregate them on the nodes that receive
# them. This concept naturally applies to bipartite graphs like MFGs -- message
# computation happens on the edges between source and destination nodes of
# the edges, and message aggregation happens on the destination nodes.
#
# For example, suppose the message function copies the source feature
# (i.e. :math:`M^{(l)}\left(h_v^{(l-1)}, h_u^{(l-1)}, e_{u\to v}^{(l-1)}\right) = h_v^{(l-1)}`),
# and the reduce function averages the received messages. Performing
# such message passing computation on a bipartite graph is no different than
# on a full graph:
#
import dgl.function as fn
mfg.update_all(message_func=fn.copy_u("h", "m"), reduce_func=fn.mean("m", "h"))
m_v = mfg.dstdata["h"]
m_v
######################################################################
# Putting them together, you can implement a GraphSAGE convolution for
# training with neighbor sampling as follows (the differences to the :doc:`full graph
# counterpart <../blitz/3_message_passing>` are highlighted with arrows ``<---``)
#
import torch.nn as nn
import torch.nn.functional as F
import tqdm
class SAGEConv(nn.Module):
"""Graph convolution module used by the GraphSAGE model.
Parameters
----------
in_feat : int
Input feature size.
out_feat : int
Output feature size.
"""
def __init__(self, in_feat, out_feat):
super(SAGEConv, self).__init__()
# A linear submodule for projecting the input and neighbor feature to the output.
self.linear = nn.Linear(in_feat * 2, out_feat)
def forward(self, g, h):
"""Forward computation
Parameters
----------
g : Graph
The input MFG.
h : (Tensor, Tensor)
The feature of source nodes and destination nodes as a pair of Tensors.
"""
with g.local_scope():
h_src, h_dst = h
g.srcdata["h"] = h_src # <---
g.dstdata["h"] = h_dst # <---
# update_all is a message passing API.
g.update_all(fn.copy_u("h", "m"), fn.mean("m", "h_N"))
h_N = g.dstdata["h_N"]
h_total = torch.cat([h_dst, h_N], dim=1) # <---
return self.linear(h_total)
class Model(nn.Module):
def __init__(self, in_feats, h_feats, num_classes):
super(Model, self).__init__()
self.conv1 = SAGEConv(in_feats, h_feats)
self.conv2 = SAGEConv(h_feats, num_classes)
def forward(self, mfgs, x):
h_dst = x[: mfgs[0].num_dst_nodes()]
h = self.conv1(mfgs[0], (x, h_dst))
h = F.relu(h)
h_dst = h[: mfgs[1].num_dst_nodes()]
h = self.conv2(mfgs[1], (h, h_dst))
return h
sampler = dgl.dataloading.MultiLayerNeighborSampler([4, 4])
train_dataloader = dgl.dataloading.DataLoader(
graph,
train_nids,
sampler,
device=device,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=0,
)
model = Model(graph.ndata["feat"].shape[1], 128, dataset.num_classes).to(device)
with tqdm.tqdm(train_dataloader) as tq:
for step, (input_nodes, output_nodes, mfgs) in enumerate(tq):
inputs = mfgs[0].srcdata["feat"]
labels = mfgs[-1].dstdata["label"]
predictions = model(mfgs, inputs)
######################################################################
# Both ``update_all`` and the functions in ``nn.functional`` namespace
# support MFGs, so you can migrate the code working for small
# graphs to large graph training with minimal changes introduced above.
#
######################################################################
# Writing GNN Modules for Both Full-graph Training and Stochastic Training
# ------------------------------------------------------------------------
#
# Here is a step-by-step tutorial for writing a GNN module for both
# :doc:`full-graph training <../blitz/1_introduction>` *and* :doc:`stochastic
# training <L1_large_node_classification>`.
#
# Say you start with a GNN module that works for full-graph training only:
#
class SAGEConv(nn.Module):
"""Graph convolution module used by the GraphSAGE model.
Parameters
----------
in_feat : int
Input feature size.
out_feat : int
Output feature size.
"""
def __init__(self, in_feat, out_feat):
super().__init__()
# A linear submodule for projecting the input and neighbor feature to the output.
self.linear = nn.Linear(in_feat * 2, out_feat)
def forward(self, g, h):
"""Forward computation
Parameters
----------
g : Graph
The input graph.
h : Tensor
The input node feature.
"""
with g.local_scope():
g.ndata["h"] = h
# update_all is a message passing API.
g.update_all(
message_func=fn.copy_u("h", "m"),
reduce_func=fn.mean("m", "h_N"),
)
h_N = g.ndata["h_N"]
h_total = torch.cat([h, h_N], dim=1)
return self.linear(h_total)
######################################################################
# **First step**: Check whether the input feature is a single tensor or a
# pair of tensors:
#
# .. code:: python
#
# if isinstance(h, tuple):
# h_src, h_dst = h
# else:
# h_src = h_dst = h
#
# **Second step**: Replace node features ``h`` with ``h_src`` or
# ``h_dst``, and assign the node features to ``srcdata`` or ``dstdata``,
# instead of ``ndata``.
#
# Whether to assign to ``srcdata`` or ``dstdata`` depends on whether the
# said feature acts as the features on source nodes or destination nodes
# of the edges in the message functions (in ``update_all`` or
# ``apply_edges``).
#
# *Example 1*: For the following ``update_all`` statement:
#
# .. code:: python
#
# g.ndata['h'] = h
# g.update_all(message_func=fn.copy_u('h', 'm'), reduce_func=fn.mean('m', 'h_N'))
#
# The node feature ``h`` acts as source node feature because ``'h'``
# appeared as source node feature. So you will need to replace ``h`` with
# source feature ``h_src`` and assign to ``srcdata`` for the version that
# works with both cases:
#
# .. code:: python
#
# g.srcdata['h'] = h_src
# g.update_all(message_func=fn.copy_u('h', 'm'), reduce_func=fn.mean('m', 'h_N'))
#
# *Example 2*: For the following ``apply_edges`` statement:
#
# .. code:: python
#
# g.ndata['h'] = h
# g.apply_edges(fn.u_dot_v('h', 'h', 'score'))
#
# The node feature ``h`` acts as both source node feature and destination
# node feature. So you will assign ``h_src`` to ``srcdata`` and ``h_dst``
# to ``dstdata``:
#
# .. code:: python
#
# g.srcdata['h'] = h_src
# g.dstdata['h'] = h_dst
# # The first 'h' corresponds to source feature (u) while the second 'h' corresponds to destination feature (v).
# g.apply_edges(fn.u_dot_v('h', 'h', 'score'))
#
# .. note::
#
# For homogeneous graphs (i.e. graphs with only one node type
# and one edge type), ``srcdata`` and ``dstdata`` are aliases of
# ``ndata``. So you can safely replace ``ndata`` with ``srcdata`` and
# ``dstdata`` even for full-graph training.
#
# **Third step**: Replace the ``ndata`` for outputs with ``dstdata``.
#
# For example, the following code
#
# .. code:: python
#
# # Assume that update_all() function has been called with output node features in `h_N`.
# h_N = g.ndata['h_N']
# h_total = torch.cat([h, h_N], dim=1)
#
# will change to
#
# .. code:: python
#
# h_N = g.dstdata['h_N']
# h_total = torch.cat([h_dst, h_N], dim=1)
#
######################################################################
# Putting together, you will change the ``SAGEConvForBoth`` module above
# to something like the following:
#
class SAGEConvForBoth(nn.Module):
"""Graph convolution module used by the GraphSAGE model.
Parameters
----------
in_feat : int
Input feature size.
out_feat : int
Output feature size.
"""
def __init__(self, in_feat, out_feat):
super().__init__()
# A linear submodule for projecting the input and neighbor feature to the output.
self.linear = nn.Linear(in_feat * 2, out_feat)
def forward(self, g, h):
"""Forward computation
Parameters
----------
g : Graph
The input graph.
h : Tensor or tuple[Tensor, Tensor]
The input node feature.
"""
with g.local_scope():
if isinstance(h, tuple):
h_src, h_dst = h
else:
h_src = h_dst = h
g.srcdata["h"] = h_src
# update_all is a message passing API.
g.update_all(
message_func=fn.copy_u("h", "m"),
reduce_func=fn.mean("m", "h_N"),
)
h_N = g.ndata["h_N"]
h_total = torch.cat([h_dst, h_N], dim=1)
return self.linear(h_total)
# Thumbnail credits: Representation Learning on Networks, Jure Leskovec, WWW 2018
# sphinx_gallery_thumbnail_path = '_static/blitz_3_message_passing.png'
"""
Single Machine Multi-GPU Minibatch Node Classification
======================================================
In this tutorial, you will learn how to use multiple GPUs in training a
graph neural network (GNN) for node classification.
(Time estimate: 8 minutes)
This tutorial assumes that you have read the :doc:`Training GNN with Neighbor
Sampling for Node Classification <../large/L1_large_node_classification>`
tutorial. It also assumes that you know the basics of training general
models with multi-GPU with ``DistributedDataParallel``.
.. note::
See `this tutorial <https://pytorch.org/tutorials/intermediate/ddp_tutorial.html>`__
from PyTorch for general multi-GPU training with ``DistributedDataParallel``. Also,
see the first section of :doc:`the multi-GPU graph classification
tutorial <1_graph_classification>`
for an overview of using ``DistributedDataParallel`` with DGL.
"""
######################################################################
# Loading Dataset
# ---------------
#
# OGB already prepared the data as a ``DGLGraph`` object. The following code is
# copy-pasted from the :doc:`Training GNN with Neighbor Sampling for Node
# Classification <../large/L1_large_node_classification>`
# tutorial.
#
import os
os.environ["DGLBACKEND"] = "pytorch"
import dgl
import numpy as np
import sklearn.metrics
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from dgl.nn import SAGEConv
from ogb.nodeproppred import DglNodePropPredDataset
dataset = DglNodePropPredDataset("ogbn-arxiv")
graph, node_labels = dataset[0]
# Add reverse edges since ogbn-arxiv is unidirectional.
graph = dgl.add_reverse_edges(graph)
graph.ndata["label"] = node_labels[:, 0]
node_features = graph.ndata["feat"]
num_features = node_features.shape[1]
num_classes = (node_labels.max() + 1).item()
idx_split = dataset.get_idx_split()
train_nids = idx_split["train"]
valid_nids = idx_split["valid"]
test_nids = idx_split["test"] # Test node IDs, not used in the tutorial though.
######################################################################
# Defining Model
# --------------
#
# The model will be again identical to the :doc:`Training GNN with Neighbor
# Sampling for Node Classification <../large/L1_large_node_classification>`
# tutorial.
#
class Model(nn.Module):
def __init__(self, in_feats, h_feats, num_classes):
super(Model, self).__init__()
self.conv1 = SAGEConv(in_feats, h_feats, aggregator_type="mean")
self.conv2 = SAGEConv(h_feats, num_classes, aggregator_type="mean")
self.h_feats = h_feats
def forward(self, mfgs, x):
h_dst = x[: mfgs[0].num_dst_nodes()]
h = self.conv1(mfgs[0], (x, h_dst))
h = F.relu(h)
h_dst = h[: mfgs[1].num_dst_nodes()]
h = self.conv2(mfgs[1], (h, h_dst))
return h
######################################################################
# Defining Training Procedure
# ---------------------------
#
# The training procedure will be slightly different from what you saw
# previously, in the sense that you will need to
#
# * Initialize a distributed training context with ``torch.distributed``.
# * Wrap your model with ``torch.nn.parallel.DistributedDataParallel``.
# * Add a ``use_ddp=True`` argument to the DGL dataloader you wish to run
# together with DDP.
#
# You will also need to wrap the training loop inside a function so that
# you can spawn subprocesses to run it.
#
def run(proc_id, devices):
# Initialize distributed training context.
dev_id = devices[proc_id]
dist_init_method = "tcp://{master_ip}:{master_port}".format(
master_ip="127.0.0.1", master_port="12345"
)
if torch.cuda.device_count() < 1:
device = torch.device("cpu")
torch.distributed.init_process_group(
backend="gloo",
init_method=dist_init_method,
world_size=len(devices),
rank=proc_id,
)
else:
torch.cuda.set_device(dev_id)
device = torch.device("cuda:" + str(dev_id))
torch.distributed.init_process_group(
backend="nccl",
init_method=dist_init_method,
world_size=len(devices),
rank=proc_id,
)
# Define training and validation dataloader, copied from the previous tutorial
# but with one line of difference: use_ddp to enable distributed data parallel
# data loading.
sampler = dgl.dataloading.NeighborSampler([4, 4])
train_dataloader = dgl.dataloading.DataLoader(
# The following arguments are specific to DataLoader.
graph, # The graph
train_nids, # The node IDs to iterate over in minibatches
sampler, # The neighbor sampler
device=device, # Put the sampled MFGs on CPU or GPU
use_ddp=True, # Make it work with distributed data parallel
# The following arguments are inherited from PyTorch DataLoader.
batch_size=1024, # Per-device batch size.
# The effective batch size is this number times the number of GPUs.
shuffle=True, # Whether to shuffle the nodes for every epoch
drop_last=False, # Whether to drop the last incomplete batch
num_workers=0, # Number of sampler processes
)
valid_dataloader = dgl.dataloading.DataLoader(
graph,
valid_nids,
sampler,
device=device,
use_ddp=False,
batch_size=1024,
shuffle=False,
drop_last=False,
num_workers=0,
)
model = Model(num_features, 128, num_classes).to(device)
# Wrap the model with distributed data parallel module.
if device == torch.device("cpu"):
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=None, output_device=None
)
else:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[device], output_device=device
)
# Define optimizer
opt = torch.optim.Adam(model.parameters())
best_accuracy = 0
best_model_path = "./model.pt"
# Copied from previous tutorial with changes highlighted.
for epoch in range(10):
model.train()
with tqdm.tqdm(train_dataloader) as tq:
for step, (input_nodes, output_nodes, mfgs) in enumerate(tq):
# feature copy from CPU to GPU takes place here
inputs = mfgs[0].srcdata["feat"]
labels = mfgs[-1].dstdata["label"]
predictions = model(mfgs, inputs)
loss = F.cross_entropy(predictions, labels)
opt.zero_grad()
loss.backward()
opt.step()
accuracy = sklearn.metrics.accuracy_score(
labels.cpu().numpy(),
predictions.argmax(1).detach().cpu().numpy(),
)
tq.set_postfix(
{"loss": "%.03f" % loss.item(), "acc": "%.03f" % accuracy},
refresh=False,
)
model.eval()
# Evaluate on only the first GPU.
if proc_id == 0:
predictions = []
labels = []
with tqdm.tqdm(valid_dataloader) as tq, torch.no_grad():
for input_nodes, output_nodes, mfgs in tq:
inputs = mfgs[0].srcdata["feat"]
labels.append(mfgs[-1].dstdata["label"].cpu().numpy())
predictions.append(
model(mfgs, inputs).argmax(1).cpu().numpy()
)
predictions = np.concatenate(predictions)
labels = np.concatenate(labels)
accuracy = sklearn.metrics.accuracy_score(labels, predictions)
print("Epoch {} Validation Accuracy {}".format(epoch, accuracy))
if best_accuracy < accuracy:
best_accuracy = accuracy
torch.save(model.state_dict(), best_model_path)
# Note that this tutorial does not train the whole model to the end.
break
######################################################################
# Spawning Trainer Processes
# --------------------------
#
# A typical scenario for multi-GPU training with DDP is to replicate the
# model once per GPU, and spawn one trainer process per GPU.
#
# Normally, DGL maintains only one sparse matrix representation (usually COO)
# for each graph, and will create new formats when some APIs are called for
# efficiency. For instance, calling ``in_degrees`` will create a CSC
# representation for the graph, and calling ``out_degrees`` will create a
# CSR representation. A consequence is that if a graph is shared to
# trainer processes via copy-on-write *before* having its CSC/CSR
# created, each trainer will create its own CSC/CSR replica once ``in_degrees``
# or ``out_degrees`` is called. To avoid this, you need to create
# all sparse matrix representations beforehand using the ``create_formats_``
# method:
#
graph.create_formats_()
######################################################################
# Then you can spawn the subprocesses to train with multiple GPUs.
#
#
# .. code:: python
#
# # Say you have four GPUs.
# if __name__ == '__main__':
# num_gpus = 4
# import torch.multiprocessing as mp
# mp.spawn(run, args=(list(range(num_gpus)),), nprocs=num_gpus)
# Thumbnail credits: Stanford CS224W Notes
# sphinx_gallery_thumbnail_path = '_static/blitz_1_introduction.png'
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment