Unverified Commit 65866989 authored by Tianjun Xiao's avatar Tianjun Xiao Committed by GitHub
Browse files

[NN] [Doc] Fix nn api doc (#2047)

* fix mxnet nn doc and no note on chebconv

* change notes to note to highlight
parent dacc7afe
......@@ -47,8 +47,8 @@ class SGConv(nn.Module):
0-in-degree nodes in input graph. By setting ``True``, it will suppress the check
and let the users handle it by themselves. Default: ``False``.
Notes
-----
Note
----
Zero in-degree nodes will lead to invalid output value. This is because no message
will be passed to those nodes, the aggregation function will be appied on empty input.
A common practice to avoid this is to add a self-loop for each node in the graph if
......@@ -107,8 +107,8 @@ class SGConv(nn.Module):
-----------
Reinitialize learnable parameters.
Notes
-----
Note
----
The model parameters are initialized using xavier initialization
and the bias is initialized to be zero.
"""
......@@ -158,8 +158,8 @@ class SGConv(nn.Module):
since no message will be passed to those nodes. This will cause invalid output.
The error can be ignored by setting ``allow_zero_in_degree`` parameter to ``True``.
Notes
-----
Note
----
If ``cache`` is set to True, ``feat`` and ``graph`` should not change during
training, or you will get wrong results.
"""
......
......@@ -82,8 +82,8 @@ class TAGConv(nn.Module):
-----------
Reinitialize learnable parameters.
Notes
-----
Note
----
The model parameters are initialized using Glorot uniform initialization.
"""
gain = nn.init.calculate_gain('relu')
......
......@@ -44,10 +44,6 @@ class ChebConv(layers.Layer):
bias : bool, optional
If True, adds a learnable bias to the output. Default: ``True``.
Note
----
ChebConv only support DGLGraph as input for now. Heterograph will report error. To be fixed.
Example
-------
>>> import dgl
......
......@@ -29,30 +29,6 @@ class DenseChebConv(layers.Layer):
bias : bool, optional
If True, adds a learnable bias to the output. Default: ``True``.
Example
-------
>>> import dgl
>>> import numpy as np
>>> import tensorflow as tf
>>> from dgl.nn import DenseChebConv
>>>
>>> feat = tf.ones(6, 10)
>>> adj = tf.tensor([[0., 0., 1., 0., 0., 0.],
... [1., 0., 0., 0., 0., 0.],
... [0., 1., 0., 0., 0., 0.],
... [0., 0., 1., 0., 0., 1.],
... [0., 0., 0., 1., 0., 0.],
... [0., 0., 0., 0., 0., 0.]])
>>> conv = DenseChebConv(10, 2, 2)
>>> res = conv(adj, feat)
>>> res
tensor([[-3.3516, -2.4797],
[-3.3516, -2.4797],
[-3.3516, -2.4797],
[-4.5192, -3.0835],
[-2.5259, -2.0527],
[-0.5327, -1.0219]])
See also
--------
`ChebConv <https://docs.dgl.ai/api/python/nn.tensorflow.html#chebconv>`__
......
......@@ -63,8 +63,8 @@ class GATConv(layers.Layer):
0-in-degree nodes in input graph. By setting ``True``, it will suppress the check
and let the users handle it by themselves. Defaults: ``False``.
Notes
-----
Note
----
Zero in-degree nodes will lead to invalid output value. This is because no message
will be passed to those nodes, the aggregation function will be appied on empty input.
A common practice to avoid this is to add a self-loop for each node in the graph if
......
......@@ -60,8 +60,8 @@ class GraphConv(layers.Layer):
bias : torch.Tensor
The learnable bias tensor.
Notes
-----
Note
----
Zero in-degree nodes will lead to invalid output value. This is because no message
will be passed to those nodes, the aggregation function will be appied on empty input.
A common practice to avoid this is to add a self-loop for each node in the graph if
......@@ -208,8 +208,8 @@ class GraphConv(layers.Layer):
since no message will be passed to those nodes. This will cause invalid output.
The error can be ignored by setting ``allow_zero_in_degree`` parameter to ``True``.
Notes
-----
Note
----
* Input shape: :math:`(N, *, \text{in_feats})` where * means any number of additional
dimensions, :math:`N` is the number of nodes.
* Output shape: :math:`(N, *, \text{out_feats})` where all but the last dimension are
......
......@@ -49,8 +49,8 @@ class SGConv(layers.Layer):
0-in-degree nodes in input graph. By setting ``True``, it will suppress the check
and let the users handle it by themselves. Default: ``False``.
Notes
-----
Note
----
Zero in-degree nodes will lead to invalid output value. This is because no message
will be passed to those nodes, the aggregation function will be appied on empty input.
A common practice to avoid this is to add a self-loop for each node in the graph if
......@@ -145,8 +145,8 @@ class SGConv(layers.Layer):
since no message will be passed to those nodes. This will cause invalid output.
The error can be ignored by setting ``allow_zero_in_degree`` parameter to ``True``.
Notes
-----
Note
----
If ``cache`` is set to True, ``feat`` and ``graph`` should not change during
training, or you will get wrong results.
"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment