"src/turbomind/kernels/bert_preprocess_kernels.h" did not exist on "720fc533da804ac3f46ee938864403e51fcd9fa7"
Unverified Commit 619d735d authored by Hongzhi (Steve), Chen's avatar Hongzhi (Steve), Chen Committed by GitHub
Browse files

[Misc] Replace \xxx with @XXX in structured comment. (#4822)



* param

* brief

* note

* return

* tparam

* brief2

* file

* return2

* return

* blabla

* all
Co-authored-by: default avatarSteve <ubuntu@ip-172-31-34-29.ap-northeast-1.compute.internal>
parent 96297fb8
/*!
* Copyright (c) 2018 by Contributors
* \file graph/sampler/generic_randomwalk_cpu.h
* \brief DGL sampler - templated implementation definition of random walks on
* @file graph/sampler/generic_randomwalk_cpu.h
* @brief DGL sampler - templated implementation definition of random walks on
* CPU
*/
......@@ -38,20 +38,20 @@ template <typename IdxType>
using TerminatePredicate = std::function<bool(IdxType *, dgl_id_t, int64_t)>;
/*!
* \brief Select one successor of metapath-based random walk, given the path
* @brief Select one successor of metapath-based random walk, given the path
* generated so far.
*
* \param data The path generated so far, of type \c IdxType.
* \param curr The last node ID generated.
* \param len The number of nodes generated so far. Note that the seed node is
* @param data The path generated so far, of type \c IdxType.
* @param curr The last node ID generated.
* @param len The number of nodes generated so far. Note that the seed node is
* always included as \c data[0], and the successors start from \c data[1].
*
* \param edges_by_type Vector of results from \c GetAdj() by edge type.
* \param metapath_data Edge types of given metapath.
* \param prob Transition probability per edge type.
* \param terminate Predicate for terminating the current random walk path.
* @param edges_by_type Vector of results from \c GetAdj() by edge type.
* @param metapath_data Edge types of given metapath.
* @param prob Transition probability per edge type.
* @param terminate Predicate for terminating the current random walk path.
*
* \return A tuple of ID of next successor (-1 if not exist), the last traversed
* @return A tuple of ID of next successor (-1 if not exist), the last traversed
* edge ID, as well as whether to terminate.
*/
template <DGLDeviceType XPU, typename IdxType>
......@@ -104,21 +104,21 @@ std::tuple<dgl_id_t, dgl_id_t, bool> MetapathRandomWalkStep(
}
/*!
* \brief Select one successor of metapath-based random walk, given the path
* @brief Select one successor of metapath-based random walk, given the path
* generated so far specifically for the uniform probability distribution.
*
* \param data The path generated so far, of type \c IdxType.
* \param curr The last node ID generated.
* \param len The number of nodes generated so far. Note that the seed node is
* @param data The path generated so far, of type \c IdxType.
* @param curr The last node ID generated.
* @param len The number of nodes generated so far. Note that the seed node is
* always included as \c data[0], and the successors start from \c data[1].
*
* \param edges_by_type Vector of results from \c GetAdj() by edge type.
* \param metapath_data Edge types of given metapath.
* \param prob Transition probability per edge type, for this special case this
* @param edges_by_type Vector of results from \c GetAdj() by edge type.
* @param metapath_data Edge types of given metapath.
* @param prob Transition probability per edge type, for this special case this
* will be a NullArray \param terminate Predicate for terminating the current
* random walk path.
*
* \return A pair of ID of next successor (-1 if not exist), as well as whether
* @return A pair of ID of next successor (-1 if not exist), as well as whether
* to terminate. \note This function is called only if all the probability
* arrays are null.
*/
......@@ -155,9 +155,9 @@ std::tuple<dgl_id_t, dgl_id_t, bool> MetapathRandomWalkStepUniform(
}
/*!
* \brief Metapath-based random walk.
* \param hg The heterograph.
* \param seeds A 1D array of seed nodes, with the type the source type of the
* @brief Metapath-based random walk.
* @param hg The heterograph.
* @param seeds A 1D array of seed nodes, with the type the source type of the
* first edge type in the metapath. \param metapath A 1D array of edge types
* representing the metapath. \param prob A vector of 1D float arrays,
* indicating the transition probability of each edge by edge type. An empty
......
/*!
* Copyright (c) 2021 by Contributors
* \file graph/sampling/node2vec.cc
* \brief Dispatcher of DGL node2vec random walks
* @file graph/sampling/node2vec.cc
* @brief Dispatcher of DGL node2vec random walks
*/
#include <dgl/array.h>
......
/*!
* Copyright (c) 2021 by Contributors
* \file graph/sampling/node2vec_cpu.cc
* \brief DGL sampler - CPU implementation of node2vec random walk with OpenMP
* @file graph/sampling/node2vec_cpu.cc
* @brief DGL sampler - CPU implementation of node2vec random walk with OpenMP
*/
#include <dgl/array.h>
......
/*!
* Copyright (c) 2021 by Contributors
* \file graph/sampling/node2vec_impl.h
* \brief DGL sampler - templated implementation definition of node2vec random
* @file graph/sampling/node2vec_impl.h
* @brief DGL sampler - templated implementation definition of node2vec random
* walks
*/
......@@ -26,14 +26,14 @@ namespace sampling {
namespace impl {
/*!
* \brief Node2vec random walk.
* \param hg The heterograph.
* \param seeds A 1D array of seed nodes, with the type the source type of the
* @brief Node2vec random walk.
* @param hg The heterograph.
* @param seeds A 1D array of seed nodes, with the type the source type of the
* first edge type in the metapath.
* \param p Float, indicating likelihood of immediately revisiting a node in the
* @param p Float, indicating likelihood of immediately revisiting a node in the
* walk. \param q Float, control parameter to interpolate between breadth-first
* strategy and depth-first strategy. \param walk_length Int, length of walk.
* \param prob A vector of 1D float arrays, indicating the transition
* @param prob A vector of 1D float arrays, indicating the transition
* probability of each edge by edge type. An empty float array assumes
* uniform transition. \return A 2D array of shape (len(seeds), len(walk_length)
* + 1) with node IDs. The paths that terminated early are padded with -1.
......
/*!
* Copyright (c) 2021 by Contributors
* \file graph/sampling/node2vec_randomwalk.cc
* \brief DGL sampler - CPU implementation of node2vec random walk.
* @file graph/sampling/node2vec_randomwalk.cc
* @brief DGL sampler - CPU implementation of node2vec random walk.
*/
#ifndef DGL_GRAPH_SAMPLING_RANDOMWALKS_NODE2VEC_RANDOMWALK_H_
......@@ -47,15 +47,15 @@ bool has_edge_between(const CSRMatrix &csr, dgl_id_t u, dgl_id_t v) {
}
/*!
* \brief Node2vec random walk step function
* \param data The path generated so far, of type \c IdxType.
* \param curr The last node ID generated.
* \param pre The last last node ID generated
* \param p Float, indicating likelihood of immediately revisiting a node in the
* @brief Node2vec random walk step function
* @param data The path generated so far, of type \c IdxType.
* @param curr The last node ID generated.
* @param pre The last last node ID generated
* @param p Float, indicating likelihood of immediately revisiting a node in the
* walk.
* \param q Float, control parameter to interpolate between breadth-first
* @param q Float, control parameter to interpolate between breadth-first
* strategy and depth-first strategy.
* \param len The number of nodes generated so far. Note that the seed node is
* @param len The number of nodes generated so far. Note that the seed node is
* always included as \c data[0], and the successors start from \c
* data[1]. \param csr The CSR matrix \param prob Transition probability \param
* terminate Predicate for terminating the current random walk path. \return A
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph/sampling/randomwalk_cpu.cc
* \brief DGL sampler - CPU implementation of metapath-based random walk with
* @file graph/sampling/randomwalk_cpu.cc
* @brief DGL sampler - CPU implementation of metapath-based random walk with
* OpenMP
*/
......
/*!
* Copyright (c) 2021-2022 by Contributors
* \file graph/sampling/randomwalk_gpu.cu
* \brief CUDA random walk sampleing
* @file graph/sampling/randomwalk_gpu.cu
* @brief CUDA random walk sampleing
*/
#include <curand_kernel.h>
......@@ -239,7 +239,7 @@ std::pair<IdArray, IdArray> RandomWalkUniform(
}
/**
* \brief Random walk for biased choice. We use inverse transform sampling to
* @brief Random walk for biased choice. We use inverse transform sampling to
* choose the next step.
*/
template <DGLDeviceType XPU, typename FloatType, typename IdType>
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph/sampling/randomwalk_with_restart_cpu.cc
* \brief DGL sampler - CPU implementation of metapath-based random walk with
* @file graph/sampling/randomwalk_with_restart_cpu.cc
* @brief DGL sampler - CPU implementation of metapath-based random walk with
* restart with OpenMP
*/
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph/sampling/randomwalks.cc
* \brief Dispatcher of different DGL random walks by device type
* @file graph/sampling/randomwalks.cc
* @brief Dispatcher of different DGL random walks by device type
*/
#include <dgl/array.h>
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph/sampler/generic_randomwalk_cpu.h
* \brief DGL sampler - templated implementation definition of random walks on
* @file graph/sampler/generic_randomwalk_cpu.h
* @brief DGL sampler - templated implementation definition of random walks on
* CPU
*/
......@@ -29,8 +29,8 @@ namespace impl {
namespace {
/*!
* \brief Generic Random Walk.
* \param seeds A 1D array of seed nodes, with the type the source type of the
* @brief Generic Random Walk.
* @param seeds A 1D array of seed nodes, with the type the source type of the
* first edge type in the metapath. \param max_num_steps The maximum number of
* steps of a random walk path. \param step The random walk step function with
* type \c StepFunc. \param max_nodes Throws an error if one of the values in \c
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph/sampling/randomwalks_impl.h
* \brief DGL sampler - templated implementation definition of random walks
* @file graph/sampling/randomwalks_impl.h
* @brief DGL sampler - templated implementation definition of random walks
*/
#ifndef DGL_GRAPH_SAMPLING_RANDOMWALKS_RANDOMWALKS_IMPL_H_
......@@ -25,7 +25,7 @@ namespace sampling {
namespace impl {
/*!
* \brief Random walk step function
* @brief Random walk step function
*/
template <typename IdxType>
using StepFunc = std::function<
......@@ -36,17 +36,17 @@ using StepFunc = std::function<
int64_t)>; // # of steps
/*!
* \brief Get the node types traversed by the metapath.
* \return A 1D array of shape (len(metapath) + 1,) with node type IDs.
* @brief Get the node types traversed by the metapath.
* @return A 1D array of shape (len(metapath) + 1,) with node type IDs.
*/
template <DGLDeviceType XPU, typename IdxType>
TypeArray GetNodeTypesFromMetapath(
const HeteroGraphPtr hg, const TypeArray metapath);
/*!
* \brief Metapath-based random walk.
* \param hg The heterograph.
* \param seeds A 1D array of seed nodes, with the type the source type of the
* @brief Metapath-based random walk.
* @param hg The heterograph.
* @param seeds A 1D array of seed nodes, with the type the source type of the
* first edge type in the metapath. \param metapath A 1D array of edge types
* representing the metapath. \param prob A vector of 1D float arrays,
* indicating the transition probability of each edge by edge type. An empty
......@@ -63,9 +63,9 @@ std::pair<IdArray, IdArray> RandomWalk(
const std::vector<FloatArray> &prob);
/*!
* \brief Metapath-based random walk with restart probability.
* \param hg The heterograph.
* \param seeds A 1D array of seed nodes, with the type the source type of the
* @brief Metapath-based random walk with restart probability.
* @param hg The heterograph.
* @param seeds A 1D array of seed nodes, with the type the source type of the
* first edge type in the metapath. \param metapath A 1D array of edge types
* representing the metapath. \param prob A vector of 1D float arrays,
* indicating the transition probability of each edge by edge type. An empty
......@@ -83,10 +83,10 @@ std::pair<IdArray, IdArray> RandomWalkWithRestart(
const std::vector<FloatArray> &prob, double restart_prob);
/*!
* \brief Metapath-based random walk with stepwise restart probability. Useful
* @brief Metapath-based random walk with stepwise restart probability. Useful
* for PinSAGE-like models.
* \param hg The heterograph.
* \param seeds A 1D array of seed nodes, with the type the source type of the
* @param hg The heterograph.
* @param seeds A 1D array of seed nodes, with the type the source type of the
* first edge type in the metapath. \param metapath A 1D array of edge types
* representing the metapath. \param prob A vector of 1D float arrays,
* indicating the transition probability of each edge by edge type. An empty
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/dglgraph_data.h
* \brief Graph serialization header
* @file graph/serialize/dglgraph_data.h
* @brief Graph serialization header
*/
#ifndef DGL_GRAPH_SERIALIZE_DGLGRAPH_DATA_H_
#define DGL_GRAPH_SERIALIZE_DGLGRAPH_DATA_H_
......@@ -56,7 +56,7 @@ class GraphData : public runtime::ObjectRef {
public:
DGL_DEFINE_OBJECT_REF_METHODS(GraphData, runtime::ObjectRef, GraphDataObject);
/*! \brief create a new GraphData reference */
/*! @brief create a new GraphData reference */
static GraphData Create() {
return GraphData(std::make_shared<GraphDataObject>());
}
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/graph_serialize.cc
* \brief Graph serialization implementation
* @file graph/serialize/graph_serialize.cc
* @brief Graph serialization implementation
*
* The storage structure is
* {
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/graph_serialize.cc
* \brief Graph serialization implementation
* @file graph/serialize/graph_serialize.cc
* @brief Graph serialization implementation
*
* The storage structure is
* {
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/graph_serialize.h
* \brief Graph serialization header
* @file graph/serialize/graph_serialize.h
* @brief Graph serialization header
*/
#ifndef DGL_GRAPH_SERIALIZE_GRAPH_SERIALIZE_H_
#define DGL_GRAPH_SERIALIZE_GRAPH_SERIALIZE_H_
......@@ -76,7 +76,7 @@ class StorageMetaData : public runtime::ObjectRef {
DGL_DEFINE_OBJECT_REF_METHODS(
StorageMetaData, runtime::ObjectRef, StorageMetaDataObject);
/*! \brief create a new StorageMetaData reference */
/*! @brief create a new StorageMetaData reference */
static StorageMetaData Create() {
return StorageMetaData(std::make_shared<StorageMetaDataObject>());
}
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/heterograph_data.h
* \brief Graph serialization header
* @file graph/serialize/heterograph_data.h
* @brief Graph serialization header
*/
#ifndef DGL_GRAPH_SERIALIZE_HETEROGRAPH_DATA_H_
#define DGL_GRAPH_SERIALIZE_HETEROGRAPH_DATA_H_
......@@ -97,7 +97,7 @@ class HeteroGraphData : public runtime::ObjectRef {
DGL_DEFINE_OBJECT_REF_METHODS(
HeteroGraphData, runtime::ObjectRef, HeteroGraphDataObject);
/*! \brief create a new GraphData reference */
/*! @brief create a new GraphData reference */
static HeteroGraphData Create(
HeteroGraphPtr gptr, List<Map<std::string, Value>> node_tensors,
List<Map<std::string, Value>> edge_tensors, List<Value> ntype_names,
......@@ -106,7 +106,7 @@ class HeteroGraphData : public runtime::ObjectRef {
gptr, node_tensors, edge_tensors, ntype_names, etype_names));
}
/*! \brief create an empty GraphData reference */
/*! @brief create an empty GraphData reference */
static HeteroGraphData Create() {
return HeteroGraphData(std::make_shared<HeteroGraphDataObject>());
}
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/heterograph_serialize.cc
* \brief DGLHeteroGraph serialization implementation
* @file graph/serialize/heterograph_serialize.cc
* @brief DGLHeteroGraph serialization implementation
*
* The storage structure is
* {
......
/*!
* Copyright (c) 2019 by Contributors
* \file graph/serialize/tensor_serialize.cc
* \brief Graph serialization implementation
* @file graph/serialize/tensor_serialize.cc
* @brief Graph serialization implementation
*/
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
......
/*!
* Copyright (c) 2020-2022 by Contributors
* \file graph/serailize/zerocopy_serializer.cc
* \brief serializer implementation.
* @file graph/serailize/zerocopy_serializer.cc
* @brief serializer implementation.
*/
#include <dgl/zerocopy_serializer.h>
......
/*!
* Copyright (c) 2018 by Contributors
* \file graph/shared_mem_manager.cc
* \brief DGL sampler implementation
* @file graph/shared_mem_manager.cc
* @brief DGL sampler implementation
*/
#include "shared_mem_manager.h"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment