Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
577cf2e6
Unverified
Commit
577cf2e6
authored
Oct 22, 2019
by
Mufei Li
Committed by
GitHub
Oct 22, 2019
Browse files
[Model Zoo] Refactor and Add Utils for Chemistry (#928)
* Refactor * Add note * Update * CI
parent
0bf3b6dd
Changes
10
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
1169 additions
and
237 deletions
+1169
-237
docs/source/api/python/data.rst
docs/source/api/python/data.rst
+53
-6
examples/pytorch/model_zoo/chem/generative_models/dgmg/utils.py
...es/pytorch/model_zoo/chem/generative_models/dgmg/utils.py
+2
-2
examples/pytorch/model_zoo/chem/property_prediction/classification.py
...orch/model_zoo/chem/property_prediction/classification.py
+29
-31
examples/pytorch/model_zoo/chem/property_prediction/configure.py
...s/pytorch/model_zoo/chem/property_prediction/configure.py
+16
-5
examples/pytorch/model_zoo/chem/property_prediction/regression.py
.../pytorch/model_zoo/chem/property_prediction/regression.py
+39
-31
examples/pytorch/model_zoo/chem/property_prediction/utils.py
examples/pytorch/model_zoo/chem/property_prediction/utils.py
+150
-36
python/dgl/data/chem/alchemy.py
python/dgl/data/chem/alchemy.py
+38
-18
python/dgl/data/chem/csv_dataset.py
python/dgl/data/chem/csv_dataset.py
+27
-17
python/dgl/data/chem/tox21.py
python/dgl/data/chem/tox21.py
+15
-8
python/dgl/data/chem/utils.py
python/dgl/data/chem/utils.py
+800
-83
No files found.
docs/source/api/python/data.rst
View file @
577cf2e6
...
...
@@ -142,19 +142,66 @@ Molecular Graphs
To work on molecular graphs, make sure you have installed `RDKit 2018.09.3 <https://www.rdkit.org/docs/Install.html>`__.
Featurization
`````````````
Featurization
Utils
`````````````
``````
For the use of graph neural networks, we need to featurize nodes (atoms) and edges (bonds). Below we list some
featurization methods/utilities:
For the use of graph neural networks, we need to featurize nodes (atoms) and edges (bonds).
General utils:
.. autosummary::
:toctree: ../../generated/
chem.one_hot_encoding
chem.ConcatFeaturizer
chem.ConcatFeaturizer.__call__
Utils for atom featurization:
.. autosummary::
:toctree: ../../generated/
chem.atom_type_one_hot
chem.atomic_number_one_hot
chem.atomic_number
chem.atom_degree_one_hot
chem.atom_degree
chem.atom_total_degree_one_hot
chem.atom_total_degree
chem.atom_implicit_valence_one_hot
chem.atom_implicit_valence
chem.atom_hybridization_one_hot
chem.atom_total_num_H_one_hot
chem.atom_total_num_H
chem.atom_formal_charge_one_hot
chem.atom_formal_charge
chem.atom_num_radical_electrons_one_hot
chem.atom_num_radical_electrons
chem.atom_is_aromatic_one_hot
chem.atom_is_aromatic
chem.atom_chiral_tag_one_hot
chem.atom_mass
chem.BaseAtomFeaturizer
chem.BaseAtomFeaturizer.feat_size
chem.BaseAtomFeaturizer.__call__
chem.CanonicalAtomFeaturizer
Utils for bond featurization:
.. autosummary::
:toctree: ../../generated/
chem.bond_type_one_hot
chem.bond_is_conjugated_one_hot
chem.bond_is_conjugated
chem.bond_is_in_ring_one_hot
chem.bond_is_in_ring
chem.bond_stereo_one_hot
chem.BaseBondFeaturizer
chem.BaseBondFeaturizer.feat_size
chem.BaseBondFeaturizer.__call__
chem.CanonicalBondFeaturizer
Graph Construction
``````````````````
...
...
@@ -164,9 +211,9 @@ Several methods for constructing DGLGraphs from SMILES/RDKit molecule objects ar
:toctree: ../../generated/
chem.mol_to_graph
chem.smile_to_bigraph
chem.smile
s
_to_bigraph
chem.mol_to_bigraph
chem.smile_to_complete_graph
chem.smile
s
_to_complete_graph
chem.mol_to_complete_graph
Dataset Classes
...
...
examples/pytorch/model_zoo/chem/generative_models/dgmg/utils.py
View file @
577cf2e6
...
...
@@ -448,7 +448,7 @@ def get_atom_and_bond_types(smiles, log=True):
for
i
,
s
in
enumerate
(
smiles
):
if
log
:
print
(
'Processing smile {:d}/{:d}'
.
format
(
i
+
1
,
n_smiles
))
print
(
'Processing smile
s
{:d}/{:d}'
.
format
(
i
+
1
,
n_smiles
))
mol
=
smiles_to_standard_mol
(
s
)
if
mol
is
None
:
...
...
@@ -517,7 +517,7 @@ def eval_decisions(env, decisions):
return
env
.
get_current_smiles
()
def
get_DGMG_smile
(
env
,
mol
):
"""Mimics the reproduced SMILE with DGMG for a molecule.
"""Mimics the reproduced SMILE
S
with DGMG for a molecule.
Given a molecule, we are interested in what SMILES we will
get if we want to generate it with DGMG. This is an important
...
...
examples/pytorch/model_zoo/chem/property_prediction/classification.py
View file @
577cf2e6
import
numpy
as
np
import
torch
from
torch.nn
import
BCEWithLogitsLoss
from
torch.optim
import
Adam
from
torch.utils.data
import
DataLoader
from
dgl
import
model_zoo
from
dgl.data.utils
import
split_dataset
from
utils
import
Meter
,
EarlyStopping
,
collate_molgraphs_for_classification
,
set_random_seed
from
utils
import
Meter
,
EarlyStopping
,
collate_molgraphs
,
set_random_seed
,
\
load_dataset_for_classification
def
run_a_train_epoch
(
args
,
epoch
,
model
,
data_loader
,
loss_criterion
,
optimizer
):
model
.
train
()
train_meter
=
Meter
()
for
batch_id
,
batch_data
in
enumerate
(
data_loader
):
smiles
,
bg
,
labels
,
mask
=
batch_data
smiles
,
bg
,
labels
,
mask
s
=
batch_data
atom_feats
=
bg
.
ndata
.
pop
(
args
[
'atom_data_field'
])
atom_feats
,
labels
,
mask
=
atom_feats
.
to
(
args
[
'device'
]),
\
atom_feats
,
labels
,
mask
s
=
atom_feats
.
to
(
args
[
'device'
]),
\
labels
.
to
(
args
[
'device'
]),
\
mask
.
to
(
args
[
'device'
])
mask
s
.
to
(
args
[
'device'
])
logits
=
model
(
bg
,
atom_feats
)
# Mask non-existing labels
loss
=
(
loss_criterion
(
logits
,
labels
)
*
(
mask
!=
0
).
float
()).
mean
()
loss
=
(
loss_criterion
(
logits
,
labels
)
*
(
mask
s
!=
0
).
float
()).
mean
()
optimizer
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
print
(
'epoch {:d}/{:d}, batch {:d}/{:d}, loss {:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
batch_id
+
1
,
len
(
data_loader
),
loss
.
item
()))
train_meter
.
update
(
logits
,
labels
,
mask
)
train_
roc_auc
=
train_meter
.
roc_auc_averaged_over_tasks
(
)
print
(
'epoch {:d}/{:d}, training
roc-auc score
{:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
train_roc_auc
))
train_meter
.
update
(
logits
,
labels
,
mask
s
)
train_
score
=
np
.
mean
(
train_meter
.
compute_metric
(
args
[
'metric_name'
])
)
print
(
'epoch {:d}/{:d}, training
{}
{:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
args
[
'metric_name'
],
train_score
))
def
run_an_eval_epoch
(
args
,
model
,
data_loader
):
model
.
eval
()
eval_meter
=
Meter
()
with
torch
.
no_grad
():
for
batch_id
,
batch_data
in
enumerate
(
data_loader
):
smiles
,
bg
,
labels
,
mask
=
batch_data
smiles
,
bg
,
labels
,
mask
s
=
batch_data
atom_feats
=
bg
.
ndata
.
pop
(
args
[
'atom_data_field'
])
atom_feats
,
labels
=
atom_feats
.
to
(
args
[
'device'
]),
labels
.
to
(
args
[
'device'
])
logits
=
model
(
bg
,
atom_feats
)
eval_meter
.
update
(
logits
,
labels
,
mask
)
return
eval_meter
.
roc_auc_averaged_over_tasks
(
)
eval_meter
.
update
(
logits
,
labels
,
mask
s
)
return
np
.
mean
(
eval_meter
.
compute_metric
(
args
[
'metric_name'
])
)
def
main
(
args
):
args
[
'device'
]
=
"cuda"
if
torch
.
cuda
.
is_available
()
else
"cpu"
set_random_seed
()
# Interchangeable with other datasets
if
args
[
'dataset'
]
==
'Tox21'
:
from
dgl.data.chem
import
Tox21
dataset
=
Tox21
()
trainset
,
valset
,
testset
=
split_dataset
(
dataset
,
args
[
'train_val_test_split'
])
train_loader
=
DataLoader
(
trainset
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs_for_classification
)
val_loader
=
DataLoader
(
valset
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs_for_classification
)
test_loader
=
DataLoader
(
testset
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs_for_classification
)
dataset
,
train_set
,
val_set
,
test_set
=
load_dataset_for_classification
(
args
)
train_loader
=
DataLoader
(
train_set
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs
)
val_loader
=
DataLoader
(
val_set
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs
)
test_loader
=
DataLoader
(
test_set
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs
)
if
args
[
'pre_trained'
]:
args
[
'num_epochs'
]
=
0
...
...
@@ -87,17 +84,18 @@ def main(args):
run_a_train_epoch
(
args
,
epoch
,
model
,
train_loader
,
loss_criterion
,
optimizer
)
# Validation and early stop
val_roc_auc
=
run_an_eval_epoch
(
args
,
model
,
val_loader
)
early_stop
=
stopper
.
step
(
val_roc_auc
,
model
)
print
(
'epoch {:d}/{:d}, validation roc-auc score {:.4f}, best validation roc-auc score {:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
val_roc_auc
,
stopper
.
best_score
))
val_score
=
run_an_eval_epoch
(
args
,
model
,
val_loader
)
early_stop
=
stopper
.
step
(
val_score
,
model
)
print
(
'epoch {:d}/{:d}, validation {} {:.4f}, best validation {} {:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
args
[
'metric_name'
],
val_score
,
args
[
'metric_name'
],
stopper
.
best_score
))
if
early_stop
:
break
if
not
args
[
'pre_trained'
]:
stopper
.
load_checkpoint
(
model
)
test_
roc_auc
=
run_an_eval_epoch
(
args
,
model
,
test_loader
)
print
(
'test
roc-auc score
{:.4f}'
.
format
(
test_roc_auc
))
test_
score
=
run_an_eval_epoch
(
args
,
model
,
test_loader
)
print
(
'test
{}
{:.4f}'
.
format
(
args
[
'metric_name'
],
test_score
))
if
__name__
==
'__main__'
:
import
argparse
...
...
examples/pytorch/model_zoo/chem/property_prediction/configure.py
View file @
577cf2e6
from
dgl.data.chem
import
CanonicalAtomFeaturizer
GCN_Tox21
=
{
'batch_size'
:
128
,
'lr'
:
1e-3
,
...
...
@@ -7,7 +9,9 @@ GCN_Tox21 = {
'in_feats'
:
74
,
'gcn_hidden_feats'
:
[
64
,
64
],
'classifier_hidden_feats'
:
64
,
'patience'
:
10
'patience'
:
10
,
'atom_featurizer'
:
CanonicalAtomFeaturizer
(),
'metric_name'
:
'roc_auc'
}
GAT_Tox21
=
{
...
...
@@ -20,15 +24,20 @@ GAT_Tox21 = {
'gat_hidden_feats'
:
[
32
,
32
],
'classifier_hidden_feats'
:
64
,
'num_heads'
:
[
4
,
4
],
'patience'
:
10
'patience'
:
10
,
'atom_featurizer'
:
CanonicalAtomFeaturizer
(),
'metric_name'
:
'roc_auc'
}
MPNN_Alchemy
=
{
'batch_size'
:
16
,
'num_epochs'
:
250
,
'node_in_feats'
:
15
,
'edge_in_feats'
:
5
,
'output_dim'
:
12
,
'lr'
:
0.0001
,
'patience'
:
50
'patience'
:
50
,
'metric_name'
:
'l1'
}
SCHNET_Alchemy
=
{
...
...
@@ -37,7 +46,8 @@ SCHNET_Alchemy = {
'norm'
:
True
,
'output_dim'
:
12
,
'lr'
:
0.0001
,
'patience'
:
50
'patience'
:
50
,
'metric_name'
:
'l1'
}
MGCN_Alchemy
=
{
...
...
@@ -46,7 +56,8 @@ MGCN_Alchemy = {
'norm'
:
True
,
'output_dim'
:
12
,
'lr'
:
0.0001
,
'patience'
:
50
'patience'
:
50
,
'metric_name'
:
'l1'
}
experiment_configures
=
{
...
...
examples/pytorch/model_zoo/chem/property_prediction/regression.py
View file @
577cf2e6
import
numpy
as
np
import
torch
import
torch.nn
as
nn
from
torch.utils.data
import
DataLoader
from
dgl
import
model_zoo
from
utils
import
set_random_seed
,
collate_molgraphs_for_regression
,
EarlyStopping
from
utils
import
Meter
,
set_random_seed
,
collate_molgraphs
,
EarlyStopping
,
\
load_dataset_for_regression
def
regress
(
args
,
model
,
bg
):
if
args
[
'model'
]
==
'MPNN'
:
...
...
@@ -20,36 +22,35 @@ def regress(args, model, bg):
return
model
(
bg
,
node_types
,
edge_distances
)
def
run_a_train_epoch
(
args
,
epoch
,
model
,
data_loader
,
loss_criterion
,
score_criterion
,
optimizer
):
loss_criterion
,
optimizer
):
model
.
train
()
total_loss
,
total_score
=
0
,
0
train_meter
=
Meter
()
total_loss
=
0
for
batch_id
,
batch_data
in
enumerate
(
data_loader
):
smiles
,
bg
,
labels
=
batch_data
labels
=
labels
.
to
(
args
[
'device'
])
smiles
,
bg
,
labels
,
masks
=
batch_data
labels
,
masks
=
labels
.
to
(
args
[
'device'
])
,
masks
.
to
(
args
[
'device'
])
prediction
=
regress
(
args
,
model
,
bg
)
loss
=
loss_criterion
(
prediction
,
labels
)
score
=
score_criterion
(
prediction
,
labels
)
loss
=
(
loss_criterion
(
prediction
,
labels
)
*
(
masks
!=
0
).
float
()).
mean
()
optimizer
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
total_loss
+=
loss
.
detach
().
item
()
*
bg
.
batch_size
t
otal_score
+=
score
.
detach
().
item
()
*
bg
.
batch_size
t
rain_meter
.
update
(
prediction
,
labels
,
masks
)
total_loss
/=
len
(
data_loader
.
dataset
)
total_score
/
=
len
(
data_loader
.
dataset
)
print
(
'epoch {:d}/{:d}, training loss {:.4f}, training
score
{:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
total_loss
,
total_score
))
total_score
=
np
.
mean
(
train_meter
.
compute_metric
(
args
[
'metric_name'
])
)
print
(
'epoch {:d}/{:d}, training loss {:.4f}, training
{}
{:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
total_loss
,
args
[
'metric_name'
],
total_score
))
def
run_an_eval_epoch
(
args
,
model
,
data_loader
,
score_criterion
):
def
run_an_eval_epoch
(
args
,
model
,
data_loader
):
model
.
eval
()
total_score
=
0
eval_meter
=
Meter
()
with
torch
.
no_grad
():
for
batch_id
,
batch_data
in
enumerate
(
data_loader
):
smiles
,
bg
,
labels
=
batch_data
smiles
,
bg
,
labels
,
masks
=
batch_data
labels
=
labels
.
to
(
args
[
'device'
])
prediction
=
regress
(
args
,
model
,
bg
)
score
=
score_criterion
(
prediction
,
labels
)
total_score
+=
score
.
detach
().
item
()
*
bg
.
batch_size
total_score
/=
len
(
data_loader
.
dataset
)
eval_meter
.
update
(
prediction
,
labels
,
masks
)
total_score
=
np
.
mean
(
eval_meter
.
compute_metric
(
args
[
'metric_name'
]))
return
total_score
def
main
(
args
):
...
...
@@ -57,20 +58,22 @@ def main(args):
set_random_seed
()
# Interchangeable with other datasets
if
args
[
'dataset'
]
==
'Alchemy'
:
from
dgl.data.chem
import
TencentAlchemyDataset
train_set
=
TencentAlchemyDataset
(
mode
=
'dev'
)
val_set
=
TencentAlchemyDataset
(
mode
=
'valid'
)
train_set
,
val_set
,
test_set
=
load_dataset_for_regression
(
args
)
train_loader
=
DataLoader
(
dataset
=
train_set
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs
_for_regression
)
collate_fn
=
collate_molgraphs
)
val_loader
=
DataLoader
(
dataset
=
val_set
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs_for_regression
)
collate_fn
=
collate_molgraphs
)
if
test_set
is
not
None
:
test_loader
=
DataLoader
(
dataset
=
test_set
,
batch_size
=
args
[
'batch_size'
],
collate_fn
=
collate_molgraphs
)
if
args
[
'model'
]
==
'MPNN'
:
model
=
model_zoo
.
chem
.
MPNNModel
(
output_dim
=
args
[
'output_dim'
])
model
=
model_zoo
.
chem
.
MPNNModel
(
node_input_dim
=
args
[
'node_in_feats'
],
edge_input_dim
=
args
[
'edge_in_feats'
],
output_dim
=
args
[
'output_dim'
])
elif
args
[
'model'
]
==
'SCHNET'
:
model
=
model_zoo
.
chem
.
SchNet
(
norm
=
args
[
'norm'
],
output_dim
=
args
[
'output_dim'
])
model
.
set_mean_std
(
train_set
.
mean
,
train_set
.
std
,
args
[
'device'
])
...
...
@@ -79,23 +82,28 @@ def main(args):
model
.
set_mean_std
(
train_set
.
mean
,
train_set
.
std
,
args
[
'device'
])
model
.
to
(
args
[
'device'
])
loss_fn
=
nn
.
MSELoss
()
score_fn
=
nn
.
L1Loss
()
loss_fn
=
nn
.
MSELoss
(
reduction
=
'none'
)
optimizer
=
torch
.
optim
.
Adam
(
model
.
parameters
(),
lr
=
args
[
'lr'
])
stopper
=
EarlyStopping
(
mode
=
'lower'
,
patience
=
args
[
'patience'
])
for
epoch
in
range
(
args
[
'num_epochs'
]):
# Train
run_a_train_epoch
(
args
,
epoch
,
model
,
train_loader
,
loss_fn
,
score_fn
,
optimizer
)
run_a_train_epoch
(
args
,
epoch
,
model
,
train_loader
,
loss_fn
,
optimizer
)
# Validation and early stop
val_score
=
run_an_eval_epoch
(
args
,
model
,
val_loader
,
score_fn
)
val_score
=
run_an_eval_epoch
(
args
,
model
,
val_loader
)
early_stop
=
stopper
.
step
(
val_score
,
model
)
print
(
'epoch {:d}/{:d}, validation score {:.4f}, best validation score {:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
val_score
,
stopper
.
best_score
))
print
(
'epoch {:d}/{:d}, validation {} {:.4f}, best validation {} {:.4f}'
.
format
(
epoch
+
1
,
args
[
'num_epochs'
],
args
[
'metric_name'
],
val_score
,
args
[
'metric_name'
],
stopper
.
best_score
))
if
early_stop
:
break
if
test_set
is
not
None
:
stopper
.
load_checkpoint
(
model
)
test_score
=
run_an_eval_epoch
(
args
,
model
,
test_loader
)
print
(
'test {} {:.4f}'
.
format
(
args
[
'metric_name'
],
test_score
))
if
__name__
==
"__main__"
:
import
argparse
...
...
examples/pytorch/model_zoo/chem/property_prediction/utils.py
View file @
577cf2e6
import
datetime
import
dgl
import
math
import
numpy
as
np
import
random
import
torch
from
sklearn.metrics
import
roc_auc_score
import
torch.nn.functional
as
F
from
dgl.data.utils
import
split_dataset
from
sklearn.metrics
import
roc_auc_score
,
mean_squared_error
def
set_random_seed
(
seed
=
0
):
"""Set random seed.
...
...
@@ -45,13 +49,13 @@ class Meter(object):
self
.
y_true
.
append
(
y_true
.
detach
().
cpu
())
self
.
mask
.
append
(
mask
.
detach
().
cpu
())
def
roc_auc_
averaged_over_tasks
(
self
):
"""Compute roc-auc score for each task
and return the average
.
def
roc_auc_
score
(
self
):
"""Compute roc-auc score for each task.
Returns
-------
float
roc-auc score
averaged ove
r all tasks
list of
float
roc-auc score
fo
r all tasks
"""
mask
=
torch
.
cat
(
self
.
mask
,
dim
=
0
)
y_pred
=
torch
.
cat
(
self
.
y_pred
,
dim
=
0
)
...
...
@@ -60,13 +64,83 @@ class Meter(object):
# This assumes binary case only
y_pred
=
torch
.
sigmoid
(
y_pred
)
n_tasks
=
y_true
.
shape
[
1
]
total_score
=
0
scores
=
[]
for
task
in
range
(
n_tasks
):
task_w
=
mask
[:,
task
]
task_y_true
=
y_true
[:,
task
][
task_w
!=
0
].
numpy
()
task_y_pred
=
y_pred
[:,
task
][
task_w
!=
0
].
numpy
()
scores
.
append
(
roc_auc_score
(
task_y_true
,
task_y_pred
))
return
scores
def
l1_loss
(
self
,
reduction
):
"""Compute l1 loss for each task.
Returns
-------
list of float
l1 loss for all tasks
reduction : str
* 'mean': average the metric over all labeled data points for each task
* 'sum': sum the metric over all labeled data points for each task
"""
mask
=
torch
.
cat
(
self
.
mask
,
dim
=
0
)
y_pred
=
torch
.
cat
(
self
.
y_pred
,
dim
=
0
)
y_true
=
torch
.
cat
(
self
.
y_true
,
dim
=
0
)
n_tasks
=
y_true
.
shape
[
1
]
scores
=
[]
for
task
in
range
(
n_tasks
):
task_w
=
mask
[:,
task
]
task_y_true
=
y_true
[:,
task
][
task_w
!=
0
]
task_y_pred
=
y_pred
[:,
task
][
task_w
!=
0
]
scores
.
append
(
F
.
l1_loss
(
task_y_true
,
task_y_pred
,
reduction
=
reduction
).
item
())
return
scores
def
rmse
(
self
):
"""Compute RMSE for each task.
Returns
-------
list of float
rmse for all tasks
"""
mask
=
torch
.
cat
(
self
.
mask
,
dim
=
0
)
y_pred
=
torch
.
cat
(
self
.
y_pred
,
dim
=
0
)
y_true
=
torch
.
cat
(
self
.
y_true
,
dim
=
0
)
n_data
,
n_tasks
=
y_true
.
shape
scores
=
[]
for
task
in
range
(
n_tasks
):
task_w
=
mask
[:,
task
]
task_y_true
=
y_true
[:,
task
][
task_w
!=
0
].
numpy
()
task_y_pred
=
y_pred
[:,
task
][
task_w
!=
0
].
numpy
()
total_score
+=
roc_auc_score
(
task_y_true
,
task_y_pred
)
return
total_score
/
n_tasks
scores
.
append
(
math
.
sqrt
(
mean_squared_error
(
task_y_true
,
task_y_pred
)))
return
scores
def
compute_metric
(
self
,
metric_name
,
reduction
=
'mean'
):
"""Compute metric for each task.
Parameters
----------
metric_name : str
Name for the metric to compute.
reduction : str
Only comes into effect when the metric_name is l1_loss.
* 'mean': average the metric over all labeled data points for each task
* 'sum': sum the metric over all labeled data points for each task
Returns
-------
list of float
Metric value for each task
"""
assert
metric_name
in
[
'roc_auc'
,
'l1'
,
'rmse'
],
\
'Expect metric name to be "roc_auc", "l1" or "rmse", got {}'
.
format
(
metric_name
)
assert
reduction
in
[
'mean'
,
'sum'
]
if
metric_name
==
'roc_auc'
:
return
self
.
roc_auc_score
()
if
metric_name
==
'l1'
:
return
self
.
l1_loss
(
reduction
)
if
metric_name
==
'rmse'
:
return
self
.
rmse
()
class
EarlyStopping
(
object
):
"""Early stop performing
...
...
@@ -131,14 +205,15 @@ class EarlyStopping(object):
'''Load model saved with early stopping.'''
model
.
load_state_dict
(
torch
.
load
(
self
.
filename
)[
'model_state_dict'
])
def
collate_molgraphs
_for_classification
(
data
):
"""Batching a list of datapoints for dataloader
in classification tasks
.
def
collate_molgraphs
(
data
):
"""Batching a list of datapoints for dataloader.
Parameters
----------
data : list of 4-tuples
data : list of
3-tuples or
4-tuples
.
Each tuple is for a single datapoint, consisting of
a SMILE, a DGLGraph, all-task labels and all-task weights
a SMILES, a DGLGraph, all-task labels and optionally
a binary mask indicating the existence of labels.
Returns
-------
...
...
@@ -149,40 +224,79 @@ def collate_molgraphs_for_classification(data):
labels : Tensor of dtype float32 and shape (B, T)
Batched datapoint labels. B is len(data) and
T is the number of total tasks.
weights : Tensor of dtype float32 and shape (B, T)
Batched datapoint weights. T is the number of
total tasks.
masks : Tensor of dtype float32 and shape (B, T)
Batched datapoint binary mask, indicating the
existence of labels. If binary masks are not
provided, return a tensor with ones.
"""
smiles
,
graphs
,
labels
,
mask
=
map
(
list
,
zip
(
*
data
))
assert
len
(
data
[
0
])
in
[
3
,
4
],
\
'Expect the tuple to be of length 3 or 4, got {:d}'
.
format
(
len
(
data
[
0
]))
if
len
(
data
[
0
])
==
3
:
smiles
,
graphs
,
labels
=
map
(
list
,
zip
(
*
data
))
masks
=
None
else
:
smiles
,
graphs
,
labels
,
masks
=
map
(
list
,
zip
(
*
data
))
bg
=
dgl
.
batch
(
graphs
)
bg
.
set_n_initializer
(
dgl
.
init
.
zero_initializer
)
bg
.
set_e_initializer
(
dgl
.
init
.
zero_initializer
)
labels
=
torch
.
stack
(
labels
,
dim
=
0
)
mask
=
torch
.
stack
(
mask
,
dim
=
0
)
return
smiles
,
bg
,
labels
,
mask
def
collate_molgraphs_for_regression
(
data
):
"""Batching a list of datapoints for dataloader in regression tasks.
if
masks
is
None
:
masks
=
torch
.
ones
(
labels
.
shape
)
else
:
masks
=
torch
.
stack
(
masks
,
dim
=
0
)
return
smiles
,
bg
,
labels
,
masks
def
load_dataset_for_classification
(
args
):
"""Load dataset for classification tasks.
Parameters
----------
data : list of 3-tuples
Each tuple is for a single datapoint, consisting of
a SMILE, a DGLGraph and all-task labels.
args : dict
Configurations.
Returns
-------
smiles : list
List of smiles
bg : BatchedDGLGraph
Batched DGLGraphs
labels : Tensor of dtype float32 and shape (B, T)
Batched datapoint labels. B is len(data) and
T is the number of total tasks.
dataset
The whole dataset.
train_set
Subset for training.
val_set
Subset for validation.
test_set
Subset for test.
"""
smiles
,
graphs
,
labels
=
map
(
list
,
zip
(
*
data
))
bg
=
dgl
.
batch
(
graphs
)
bg
.
set_n_initializer
(
dgl
.
init
.
zero_initializer
)
bg
.
set_e_initializer
(
dgl
.
init
.
zero_initializer
)
labels
=
torch
.
stack
(
labels
,
dim
=
0
)
return
smiles
,
bg
,
labels
assert
args
[
'dataset'
]
in
[
'Tox21'
]
if
args
[
'dataset'
]
==
'Tox21'
:
from
dgl.data.chem
import
Tox21
dataset
=
Tox21
(
atom_featurizer
=
args
[
'atom_featurizer'
])
train_set
,
val_set
,
test_set
=
split_dataset
(
dataset
,
args
[
'train_val_test_split'
])
return
dataset
,
train_set
,
val_set
,
test_set
def
load_dataset_for_regression
(
args
):
"""Load dataset for regression tasks.
Parameters
----------
args : dict
Configurations.
Returns
-------
train_set
Subset for training.
val_set
Subset for validation.
test_set
Subset for test.
"""
assert
args
[
'dataset'
]
in
[
'Alchemy'
]
if
args
[
'dataset'
]
==
'Alchemy'
:
from
dgl.data.chem
import
TencentAlchemyDataset
train_set
=
TencentAlchemyDataset
(
mode
=
'dev'
)
val_set
=
TencentAlchemyDataset
(
mode
=
'valid'
)
test_set
=
None
return
train_set
,
val_set
,
test_set
python/dgl/data/chem/alchemy.py
View file @
577cf2e6
...
...
@@ -10,7 +10,8 @@ import pickle
import
zipfile
from
collections
import
defaultdict
from
.utils
import
mol_to_complete_graph
from
.utils
import
mol_to_complete_graph
,
atom_type_one_hot
,
atom_hybridization_one_hot
,
\
atom_is_aromatic
from
..utils
import
download
,
get_download_dir
,
_get_dgl_url
,
save_graphs
,
load_graphs
from
...
import
backend
as
F
...
...
@@ -59,25 +60,19 @@ def alchemy_nodes(mol):
num_atoms
=
mol
.
GetNumAtoms
()
for
u
in
range
(
num_atoms
):
atom
=
mol
.
GetAtomWithIdx
(
u
)
symbol
=
atom
.
GetSymbol
()
atom_type
=
atom
.
GetAtomicNum
()
aromatic
=
atom
.
GetIsAromatic
()
hybridization
=
atom
.
GetHybridization
()
num_h
=
atom
.
GetTotalNumHs
()
atom_feats_dict
[
'node_type'
].
append
(
atom_type
)
h_u
=
[]
h_u
+=
[
int
(
symbol
==
x
)
for
x
in
[
'H'
,
'C'
,
'N'
,
'O'
,
'F'
,
'S'
,
'Cl'
]
]
h_u
+=
atom_type_one_hot
(
atom
,
[
'H'
,
'C'
,
'N'
,
'O'
,
'F'
,
'S'
,
'Cl'
]
)
h_u
.
append
(
atom_type
)
h_u
.
append
(
is_acceptor
[
u
])
h_u
.
append
(
is_donor
[
u
])
h_u
.
append
(
int
(
aromatic
))
h_u
+=
[
int
(
hybridization
==
x
)
for
x
in
(
Chem
.
rdchem
.
HybridizationType
.
SP
,
h_u
+=
atom_is_aromatic
(
atom
)
h_u
+=
atom_hybridization_one_hot
(
atom
,
[
Chem
.
rdchem
.
HybridizationType
.
SP
,
Chem
.
rdchem
.
HybridizationType
.
SP2
,
Chem
.
rdchem
.
HybridizationType
.
SP3
)
]
Chem
.
rdchem
.
HybridizationType
.
SP3
])
h_u
.
append
(
num_h
)
atom_feats_dict
[
'n_feat'
].
append
(
F
.
tensor
(
np
.
array
(
h_u
).
astype
(
np
.
float32
)))
...
...
@@ -155,9 +150,34 @@ class TencentAlchemyDataset(object):
contest is ongoing.
from_raw : bool
Whether to process the dataset from scratch or use a
processed one for faster speed. Default to be False.
processed one for faster speed. If you use different ways
to featurize atoms or bonds, you should set this to be True.
Default to be False.
mol_to_graph: callable, str -> DGLGraph
A function turning an RDKit molecule instance into a DGLGraph.
Default to :func:`dgl.data.chem.mol_to_complete_graph`.
atom_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for atoms in a molecule, which can be used to update
ndata for a DGLGraph. By default, we store the atom atomic numbers
under the name ``"node_type"`` and store the atom features under the
name ``"n_feat"``. The atom features include:
* One hot encoding for atom types
* Atomic number of atoms
* Whether the atom is a donor
* Whether the atom is an acceptor
* Whether the atom is aromatic
* One hot encoding for atom hybridization
* Total number of Hs on the atom
bond_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for bonds in a molecule, which can be used to update
edata for a DGLGraph. By default, we store the distance between the
end atoms under the name ``"distance"`` and store the bond features under
the name ``"e_feat"``. The bond features are one-hot encodings of the bond type.
"""
def
__init__
(
self
,
mode
=
'dev'
,
from_raw
=
False
):
def
__init__
(
self
,
mode
=
'dev'
,
from_raw
=
False
,
mol_to_graph
=
mol_to_complete_graph
,
atom_featurizer
=
alchemy_nodes
,
bond_featurizer
=
alchemy_edges
):
if
mode
==
'test'
:
raise
ValueError
(
'The test mode is not supported before '
'the Alchemy contest finishes.'
)
...
...
@@ -185,9 +205,9 @@ class TencentAlchemyDataset(object):
archive
.
extractall
(
file_dir
)
archive
.
close
()
self
.
_load
()
self
.
_load
(
mol_to_graph
,
atom_featurizer
,
bond_featurizer
)
def
_load
(
self
):
def
_load
(
self
,
mol_to_graph
,
atom_featurizer
,
bond_featurizer
):
if
not
self
.
from_raw
:
self
.
graphs
,
label_dict
=
load_graphs
(
osp
.
join
(
self
.
file_dir
,
"%s_graphs.bin"
%
self
.
mode
))
self
.
labels
=
label_dict
[
'labels'
]
...
...
@@ -210,8 +230,8 @@ class TencentAlchemyDataset(object):
for
mol
,
label
in
zip
(
supp
,
self
.
target
.
iterrows
()):
cnt
+=
1
print
(
'Processing molecule {:d}/{:d}'
.
format
(
cnt
,
dataset_size
))
graph
=
mol_to_
complete_
graph
(
mol
,
atom_featurizer
=
a
lchemy_nodes
,
bond_featurizer
=
alchemy_edges
)
graph
=
mol_to_graph
(
mol
,
atom_featurizer
=
a
tom_featurizer
,
bond_featurizer
=
bond_featurizer
)
smiles
=
Chem
.
MolToSmiles
(
mol
)
self
.
smiles
.
append
(
smiles
)
self
.
graphs
.
append
(
graph
)
...
...
python/dgl/data/chem/csv_dataset.py
View file @
577cf2e6
...
...
@@ -5,10 +5,8 @@ import numpy as np
import
os
import
sys
from
.utils
import
smile_to_bigraph
from
..utils
import
save_graphs
,
load_graphs
from
...
import
backend
as
F
from
...graph
import
DGLGraph
class
MoleculeCSVDataset
(
object
):
"""MoleculeCSVDataset
...
...
@@ -27,28 +25,33 @@ class MoleculeCSVDataset(object):
Dataframe including smiles and labels. Can be loaded by pandas.read_csv(file_path).
One column includes smiles and other columns for labels.
Column names other than smiles column would be considered as task names.
smile_to_graph: callable, str -> DGLGraph
A function turns smiles into a DGLGraph. Default one can be found
at python/dgl/data/chem/utils.py named with smile_to_bigraph.
smile_column: str
Column name that including smiles
smiles_to_graph: callable, str -> DGLGraph
A function turning a SMILES into a DGLGraph.
atom_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for atoms in a molecule, which can be used to update
ndata for a DGLGraph.
bond_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for bonds in a molecule, which can be used to update
edata for a DGLGraph.
smiles_column: str
Column name that including smiles.
cache_file_path: str
Path to store the preprocessed data
Path to store the preprocessed data
.
"""
def
__init__
(
self
,
df
,
smile_to_graph
=
smile_to_bigraph
,
smile_column
=
'smiles'
,
cache_file_path
=
"csvdata_dglgraph.bin"
):
def
__init__
(
self
,
df
,
smile
s
_to_graph
,
atom_featurizer
,
bond_featurizer
,
smiles_column
,
cache_file_path
):
if
'rdkit'
not
in
sys
.
modules
:
from
...base
import
dgl_warning
dgl_warning
(
"Please install RDKit (Recommended Version is 2018.09.3)"
)
self
.
df
=
df
self
.
smiles
=
self
.
df
[
smile_column
].
tolist
()
self
.
task_names
=
self
.
df
.
columns
.
drop
([
smile_column
]).
tolist
()
self
.
smiles
=
self
.
df
[
smile
s
_column
].
tolist
()
self
.
task_names
=
self
.
df
.
columns
.
drop
([
smile
s
_column
]).
tolist
()
self
.
n_tasks
=
len
(
self
.
task_names
)
self
.
cache_file_path
=
cache_file_path
self
.
_pre_process
(
smile_to_graph
)
self
.
_pre_process
(
smile
s
_to_graph
,
atom_featurizer
,
bond_featurizer
)
def
_pre_process
(
self
,
smile_to_graph
):
def
_pre_process
(
self
,
smile
s
_to_graph
,
atom_featurizer
,
bond_featurizer
):
"""Pre-process the dataset
* Convert molecules from smiles format into DGLGraphs
...
...
@@ -58,8 +61,14 @@ class MoleculeCSVDataset(object):
Parameters
----------
smile_to_graph : callable, SMILES -> DGLGraph
Function for converting a SMILES (str) into a DGLGraph
smiles_to_graph : callable, SMILES -> DGLGraph
Function for converting a SMILES (str) into a DGLGraph.
atom_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for atoms in a molecule, which can be used to update
ndata for a DGLGraph.
bond_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for bonds in a molecule, which can be used to update
edata for a DGLGraph.
"""
if
os
.
path
.
exists
(
self
.
cache_file_path
):
# DGLGraphs have been constructed before, reload them
...
...
@@ -72,7 +81,8 @@ class MoleculeCSVDataset(object):
self
.
graphs
=
[]
for
i
,
s
in
enumerate
(
self
.
smiles
):
print
(
'Processing molecule {:d}/{:d}'
.
format
(
i
+
1
,
len
(
self
)))
self
.
graphs
.
append
(
smile_to_graph
(
s
))
self
.
graphs
.
append
(
smiles_to_graph
(
s
,
atom_featurizer
=
atom_featurizer
,
bond_featurizer
=
bond_featurizer
))
_label_values
=
self
.
df
[
self
.
task_names
].
values
# np.nan_to_num will also turn inf into a very large number
self
.
labels
=
F
.
zerocopy_from_numpy
(
np
.
nan_to_num
(
_label_values
).
astype
(
np
.
float32
))
...
...
python/dgl/data/chem/tox21.py
View file @
577cf2e6
...
...
@@ -2,7 +2,7 @@ import numpy as np
import
sys
from
.csv_dataset
import
MoleculeCSVDataset
from
.utils
import
smile_to_bigraph
from
.utils
import
smile
s
_to_bigraph
from
..utils
import
get_download_dir
,
download
,
_get_dgl_url
from
...
import
backend
as
F
...
...
@@ -30,11 +30,19 @@ class Tox21(MoleculeCSVDataset):
Parameters
----------
smile_to_graph: callable, str -> DGLGraph
A function turns smiles into a DGLGraph. Default one can be found
at python/dgl/data/chem/utils.py named with smile_to_bigraph.
smiles_to_graph: callable, str -> DGLGraph
A function turning smiles into a DGLGraph.
Default to :func:`dgl.data.chem.smiles_to_bigraph`.
atom_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for atoms in a molecule, which can be used to update
ndata for a DGLGraph. Default to None.
bond_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict
Featurization for bonds in a molecule, which can be used to update
edata for a DGLGraph. Default to None.
"""
def
__init__
(
self
,
smile_to_graph
=
smile_to_bigraph
):
def
__init__
(
self
,
smiles_to_graph
=
smiles_to_bigraph
,
atom_featurizer
=
None
,
bond_featurizer
=
None
):
if
'pandas'
not
in
sys
.
modules
:
from
...base
import
dgl_warning
dgl_warning
(
"Please install pandas"
)
...
...
@@ -47,10 +55,10 @@ class Tox21(MoleculeCSVDataset):
df
=
df
.
drop
(
columns
=
[
'mol_id'
])
super
().
__init__
(
df
,
smile_to_graph
,
cache_file_path
=
"tox21_dglgraph.bin"
)
super
(
Tox21
,
self
).
__init__
(
df
,
smiles_to_graph
,
atom_featurizer
,
bond_featurizer
,
"smiles"
,
"tox21_dglgraph.bin"
)
self
.
_weight_balancing
()
def
_weight_balancing
(
self
):
"""Perform re-balancing for each task.
...
...
@@ -72,7 +80,6 @@ class Tox21(MoleculeCSVDataset):
num_indices
=
F
.
sum
(
self
.
mask
,
dim
=
0
)
self
.
_task_pos_weights
=
(
num_indices
-
num_pos
)
/
num_pos
@
property
def
task_pos_weights
(
self
):
"""Get weights for positive samples on each task
...
...
python/dgl/data/chem/utils.py
View file @
577cf2e6
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment