Unverified Commit 38448dac authored by yxy235's avatar yxy235 Committed by GitHub
Browse files

[Graphbolt] Add integration test for sampling in CI. (#6401)


Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-0-133.us-west-2.compute.internal>
parent 3349d341
import dgl
import dgl.graphbolt as gb
import dgl.sparse as dglsp
import torch
def test_integration_link_prediction():
torch.manual_seed(926)
indptr = torch.tensor([0, 0, 1, 3, 6, 8, 10])
indices = torch.tensor([5, 3, 3, 3, 3, 4, 4, 0, 5, 4])
matrix_a = dglsp.from_csc(indptr, indices)
node_pairs = torch.t(torch.stack(matrix_a.coo()))
node_feature_data = torch.tensor(
[
[0.9634, 0.2294],
[0.6172, 0.7865],
[0.2109, 0.1089],
[0.8672, 0.2276],
[0.5503, 0.8223],
[0.5160, 0.2486],
]
)
edge_feature_data = torch.tensor(
[
[0.5123, 0.1709, 0.6150],
[0.1476, 0.1902, 0.1314],
[0.2582, 0.5203, 0.6228],
[0.3708, 0.7631, 0.2683],
[0.2126, 0.7878, 0.7225],
[0.7885, 0.3414, 0.5485],
[0.4088, 0.8200, 0.1851],
[0.0056, 0.9469, 0.4432],
[0.8972, 0.7511, 0.3617],
[0.5773, 0.2199, 0.3366],
]
)
item_set = gb.ItemSet(node_pairs, names="node_pairs")
graph = gb.from_csc(indptr, indices)
node_feature = gb.TorchBasedFeature(node_feature_data)
edge_feature = gb.TorchBasedFeature(edge_feature_data)
features = {
("node", None, "feat"): node_feature,
("edge", None, "feat"): edge_feature,
}
feature_store = gb.BasicFeatureStore(features)
datapipe = gb.ItemSampler(item_set, batch_size=4)
datapipe = datapipe.sample_uniform_negative(graph, 1)
fanouts = torch.LongTensor([1])
datapipe = datapipe.sample_neighbor(graph, [fanouts, fanouts], replace=True)
datapipe = datapipe.transform(gb.exclude_seed_edges)
datapipe = datapipe.fetch_feature(
feature_store, node_feature_keys=["feat"], edge_feature_keys=["feat"]
)
dataloader = gb.SingleProcessDataLoader(
datapipe,
)
expected = [
str(
"""MiniBatch(seed_nodes=None,
sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([5, 4]), tensor([0, 5])),
original_column_node_ids=tensor([5, 3, 1, 2, 0, 4]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 3, 1, 2, 0, 4]),),
SampledSubgraphImpl(node_pairs=(tensor([0, 4]), tensor([0, 5])),
original_column_node_ids=tensor([5, 3, 1, 2, 0, 4]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 3, 1, 2, 0, 4]),)],
node_pairs=(tensor([5, 3, 3, 3]), tensor([1, 2, 2, 3])),
node_features={'feat': tensor([[0.5160, 0.2486],
[0.8672, 0.2276],
[0.6172, 0.7865],
[0.2109, 0.1089],
[0.9634, 0.2294],
[0.5503, 0.8223]])},
negative_srcs=tensor([[5],
[3],
[3],
[3]]),
negative_dsts=tensor([[5],
[2],
[0],
[4]]),
labels=None,
input_nodes=tensor([5, 3, 1, 2, 0, 4]),
edge_features=[{},
{}],
compacted_node_pairs=(tensor([0, 1, 1, 1]), tensor([2, 3, 3, 1])),
compacted_negative_srcs=tensor([0, 1, 1, 1]),
compacted_negative_dsts=tensor([0, 3, 4, 5]),
)"""
),
str(
"""MiniBatch(seed_nodes=None,
sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([3, 3]), tensor([3, 4])),
original_column_node_ids=tensor([3, 4, 0, 5, 1]),
original_edge_ids=None,
original_row_node_ids=tensor([3, 4, 0, 5, 1]),),
SampledSubgraphImpl(node_pairs=(tensor([1, 3]), tensor([3, 4])),
original_column_node_ids=tensor([3, 4, 0, 5, 1]),
original_edge_ids=None,
original_row_node_ids=tensor([3, 4, 0, 5, 1]),)],
node_pairs=(tensor([3, 4, 4, 0]), tensor([3, 3, 4, 4])),
node_features={'feat': tensor([[0.8672, 0.2276],
[0.5503, 0.8223],
[0.9634, 0.2294],
[0.5160, 0.2486],
[0.6172, 0.7865]])},
negative_srcs=tensor([[3],
[4],
[4],
[0]]),
negative_dsts=tensor([[4],
[5],
[1],
[4]]),
labels=None,
input_nodes=tensor([3, 4, 0, 5, 1]),
edge_features=[{},
{}],
compacted_node_pairs=(tensor([0, 1, 1, 2]), tensor([0, 0, 1, 1])),
compacted_negative_srcs=tensor([0, 1, 1, 2]),
compacted_negative_dsts=tensor([1, 3, 4, 1]),
)"""
),
str(
"""MiniBatch(seed_nodes=None,
sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([1, 2]), tensor([1, 2])),
original_column_node_ids=tensor([5, 4, 3, 0]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 4, 3, 0]),),
SampledSubgraphImpl(node_pairs=(tensor([3, 1]), tensor([1, 2])),
original_column_node_ids=tensor([5, 4, 3]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 4, 3, 0]),)],
node_pairs=(tensor([5, 4]), tensor([5, 5])),
node_features={'feat': tensor([[0.5160, 0.2486],
[0.5503, 0.8223],
[0.8672, 0.2276],
[0.9634, 0.2294]])},
negative_srcs=tensor([[5],
[4]]),
negative_dsts=tensor([[4],
[3]]),
labels=None,
input_nodes=tensor([5, 4, 3, 0]),
edge_features=[{},
{}],
compacted_node_pairs=(tensor([0, 1]), tensor([0, 0])),
compacted_negative_srcs=tensor([0, 1]),
compacted_negative_dsts=tensor([1, 2]),
)"""
),
]
for step, data in enumerate(dataloader):
assert expected[step] == str(data), print(data)
def test_integration_node_classification():
torch.manual_seed(926)
indptr = torch.tensor([0, 0, 1, 3, 6, 8, 10])
indices = torch.tensor([5, 3, 3, 3, 3, 4, 4, 0, 5, 4])
matrix_a = dglsp.from_csc(indptr, indices)
node_pairs = torch.t(torch.stack(matrix_a.coo()))
node_feature_data = torch.tensor(
[
[0.9634, 0.2294],
[0.6172, 0.7865],
[0.2109, 0.1089],
[0.8672, 0.2276],
[0.5503, 0.8223],
[0.5160, 0.2486],
]
)
edge_feature_data = torch.tensor(
[
[0.5123, 0.1709, 0.6150],
[0.1476, 0.1902, 0.1314],
[0.2582, 0.5203, 0.6228],
[0.3708, 0.7631, 0.2683],
[0.2126, 0.7878, 0.7225],
[0.7885, 0.3414, 0.5485],
[0.4088, 0.8200, 0.1851],
[0.0056, 0.9469, 0.4432],
[0.8972, 0.7511, 0.3617],
[0.5773, 0.2199, 0.3366],
]
)
item_set = gb.ItemSet(node_pairs, names="node_pairs")
graph = gb.from_csc(indptr, indices)
node_feature = gb.TorchBasedFeature(node_feature_data)
edge_feature = gb.TorchBasedFeature(edge_feature_data)
features = {
("node", None, "feat"): node_feature,
("edge", None, "feat"): edge_feature,
}
feature_store = gb.BasicFeatureStore(features)
datapipe = gb.ItemSampler(item_set, batch_size=4)
fanouts = torch.LongTensor([1])
datapipe = datapipe.sample_neighbor(graph, [fanouts, fanouts], replace=True)
datapipe = datapipe.fetch_feature(
feature_store, node_feature_keys=["feat"], edge_feature_keys=["feat"]
)
dataloader = gb.SingleProcessDataLoader(
datapipe,
)
expected = [
str(
"""MiniBatch(seed_nodes=None,
sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([0, 1, 0, 1, 5]), tensor([0, 1, 2, 3, 4])),
original_column_node_ids=tensor([5, 3, 1, 2, 4]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 3, 1, 2, 4, 0]),),
SampledSubgraphImpl(node_pairs=(tensor([4, 4, 0, 1]), tensor([0, 1, 2, 3])),
original_column_node_ids=tensor([5, 3, 1, 2]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 3, 1, 2, 4]),)],
node_pairs=(tensor([5, 3, 3, 3]), tensor([1, 2, 2, 3])),
node_features={'feat': tensor([[0.5160, 0.2486],
[0.8672, 0.2276],
[0.6172, 0.7865],
[0.2109, 0.1089],
[0.5503, 0.8223],
[0.9634, 0.2294]])},
negative_srcs=None,
negative_dsts=None,
labels=None,
input_nodes=tensor([5, 3, 1, 2, 4, 0]),
edge_features=[{},
{}],
compacted_node_pairs=(tensor([0, 1, 1, 1]), tensor([2, 3, 3, 1])),
compacted_negative_srcs=None,
compacted_negative_dsts=None,
)"""
),
str(
"""MiniBatch(seed_nodes=None,
sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([0, 2]), tensor([0, 1])),
original_column_node_ids=tensor([3, 4, 0]),
original_edge_ids=None,
original_row_node_ids=tensor([3, 4, 0]),),
SampledSubgraphImpl(node_pairs=(tensor([0, 2]), tensor([0, 1])),
original_column_node_ids=tensor([3, 4, 0]),
original_edge_ids=None,
original_row_node_ids=tensor([3, 4, 0]),)],
node_pairs=(tensor([3, 4, 4, 0]), tensor([3, 3, 4, 4])),
node_features={'feat': tensor([[0.8672, 0.2276],
[0.5503, 0.8223],
[0.9634, 0.2294]])},
negative_srcs=None,
negative_dsts=None,
labels=None,
input_nodes=tensor([3, 4, 0]),
edge_features=[{},
{}],
compacted_node_pairs=(tensor([0, 1, 1, 2]), tensor([0, 0, 1, 1])),
compacted_negative_srcs=None,
compacted_negative_dsts=None,
)"""
),
str(
"""MiniBatch(seed_nodes=None,
sampled_subgraphs=[SampledSubgraphImpl(node_pairs=(tensor([1, 2]), tensor([0, 1])),
original_column_node_ids=tensor([5, 4]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 4, 0]),),
SampledSubgraphImpl(node_pairs=(tensor([1, 1]), tensor([0, 1])),
original_column_node_ids=tensor([5, 4]),
original_edge_ids=None,
original_row_node_ids=tensor([5, 4]),)],
node_pairs=(tensor([5, 4]), tensor([5, 5])),
node_features={'feat': tensor([[0.5160, 0.2486],
[0.5503, 0.8223],
[0.9634, 0.2294]])},
negative_srcs=None,
negative_dsts=None,
labels=None,
input_nodes=tensor([5, 4, 0]),
edge_features=[{},
{}],
compacted_node_pairs=(tensor([0, 1]), tensor([0, 0])),
compacted_negative_srcs=None,
compacted_negative_dsts=None,
)"""
),
]
for step, data in enumerate(dataloader):
assert expected[step] == str(data), print(data)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment