Unverified Commit 1edc9233 authored by Quan (Andy) Gan's avatar Quan (Andy) Gan Committed by GitHub
Browse files

[Example] Hypergraph attention (#4941)

* hypergraph attention

* address comments
parent 7469bc92
"""
Hypergraph Convolution and Hypergraph Attention
(https://arxiv.org/pdf/1901.08150.pdf).
"""
import dgl
import dgl.mock_sparse as dglsp
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.functional import accuracy
import tqdm
def hypergraph_laplacian(H):
###########################################################
# (HIGHLIGHT) Compute the Laplacian with Sparse Matrix API
###########################################################
d_V = H.sum(1) # node degree
d_E = H.sum(0) # edge degree
n_edges = d_E.shape[0]
D_V_invsqrt = dglsp.diag(d_V ** -0.5) # D_V ** (-1/2)
D_E_inv = dglsp.diag(d_E ** -1) # D_E ** (-1)
W = dglsp.identity((n_edges, n_edges))
return D_V_invsqrt @ H @ W @ D_E_inv @ H.T @ D_V_invsqrt
class HypergraphAttention(nn.Module):
"""Hypergraph Attention module as in the paper
`Hypergraph Convolution and Hypergraph Attention
<https://arxiv.org/pdf/1901.08150.pdf>`_.
"""
def __init__(self, in_size, out_size):
super().__init__()
self.P = nn.Linear(in_size, out_size)
self.a = nn.Linear(2 * out_size, 1)
def forward(self, H, X, X_edges):
Z = self.P(X)
Z_edges = self.P(X_edges)
sim = self.a(torch.cat([Z[H.row], Z_edges[H.col]], 1))
sim = F.leaky_relu(sim, 0.2).squeeze(1)
# Reassign the hypergraph new weights.
H_att = dglsp.create_from_coo(H.row, H.col, sim, shape=H.shape)
H_att = H_att.softmax()
return hypergraph_laplacian(H_att) @ Z
class Net(nn.Module):
def __init__(self, in_size, out_size, hidden_size=16):
super().__init__()
self.layer1 = HypergraphAttention(in_size, hidden_size)
self.layer2 = HypergraphAttention(hidden_size, out_size)
def forward(self, H, X):
Z = self.layer1(H, X, X)
Z = F.elu(Z)
Z = self.layer2(H, Z, Z)
return Z
def train(model, optimizer, H, X, Y, train_mask):
model.train()
Y_hat = model(H, X)
loss = F.cross_entropy(Y_hat[train_mask], Y[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
def evaluate(model, H, X, Y, val_mask, test_mask):
model.eval()
Y_hat = model(H, X)
val_acc = accuracy(Y_hat[val_mask], Y[val_mask])
test_acc = accuracy(Y_hat[test_mask], Y[test_mask])
return val_acc, test_acc
def load_data():
dataset = dgl.data.CoraGraphDataset()
graph = dataset[0]
# The paper created a hypergraph from the original graph. For each node in
# the original graph, a hyperedge in the hypergraph is created to connect
# its neighbors and itself. In this case, the incidence matrix of the
# hypergraph is the same as the adjacency matrix of the original graph (with
# self-loops).
# We follow the paper and assume that the rows of the incidence matrix
# are for nodes and the columns are for edges.
src, dst = graph.edges()
H = dglsp.create_from_coo(dst, src)
H = H + dglsp.identity(H.shape)
X = graph.ndata["feat"]
Y = graph.ndata["label"]
train_mask = graph.ndata["train_mask"]
val_mask = graph.ndata["val_mask"]
test_mask = graph.ndata["test_mask"]
return H, X, Y, dataset.num_classes, train_mask, val_mask, test_mask
def main():
H, X, Y, num_classes, train_mask, val_mask, test_mask = load_data()
model = Net(X.shape[1], num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
with tqdm.trange(500) as tq:
for epoch in tq:
loss = train(model, optimizer, H, X, Y, train_mask)
val_acc, test_acc = evaluate(model, H, X, Y, val_mask, test_mask)
tq.set_postfix(
{
"Loss": f"{loss:.5f}",
"Val acc": f"{val_acc:.5f}",
"Test acc": f"{test_acc:.5f}",
},
refresh=False,
)
if __name__ == '__main__':
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment