Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
1547bd93
Commit
1547bd93
authored
Mar 04, 2024
by
Rhett Ying
Committed by
RhettYing
Mar 04, 2024
Browse files
[doc] use tqdm from tqdm.auto (#7191)
parent
69247f5b
Changes
10
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
20 additions
and
18 deletions
+20
-18
notebooks/stochastic_training/link_prediction.ipynb
notebooks/stochastic_training/link_prediction.ipynb
+4
-4
notebooks/stochastic_training/node_classification.ipynb
notebooks/stochastic_training/node_classification.ipynb
+3
-3
python/dgl/data/lrgb.py
python/dgl/data/lrgb.py
+1
-1
python/dgl/data/superpixel.py
python/dgl/data/superpixel.py
+1
-1
python/dgl/data/utils.py
python/dgl/data/utils.py
+1
-1
python/dgl/nn/pytorch/explain/gnnexplainer.py
python/dgl/nn/pytorch/explain/gnnexplainer.py
+1
-1
python/dgl/nn/pytorch/network_emb.py
python/dgl/nn/pytorch/network_emb.py
+3
-2
script/dgl_dev.yml.template
script/dgl_dev.yml.template
+2
-0
tutorials/models/4_old_wines/7_transformer.py
tutorials/models/4_old_wines/7_transformer.py
+1
-1
tutorials/multi/2_node_classification.py
tutorials/multi/2_node_classification.py
+3
-4
No files found.
notebooks/stochastic_training/link_prediction.ipynb
View file @
1547bd93
...
...
@@ -249,11 +249,11 @@
},
"outputs": [],
"source": [
"import tqdm\n",
"
from tqdm.auto
import tqdm\n",
"for epoch in range(3):\n",
" model.train()\n",
" total_loss = 0\n",
" for step, data in
tqdm.
tqdm(enumerate(create_train_dataloader())):\n",
" for step, data in tqdm(enumerate(create_train_dataloader())):\n",
" # Get node pairs with labels for loss calculation.\n",
" compacted_pairs, labels = data.node_pairs_with_labels\n",
" node_feature = data.node_features[\"feat\"]\n",
...
...
@@ -306,7 +306,7 @@
"\n",
"logits = []\n",
"labels = []\n",
"for step, data in
tqdm.
tqdm(enumerate(eval_dataloader)):\n",
"for step, data in tqdm(enumerate(eval_dataloader)):\n",
" # Get node pairs with labels for loss calculation.\n",
" compacted_pairs, label = data.node_pairs_with_labels\n",
"\n",
...
...
notebooks/stochastic_training/node_classification.ipynb
View file @
1547bd93
...
...
@@ -297,12 +297,12 @@
},
"outputs": [],
"source": [
"import tqdm\n",
"
from tqdm.auto
import tqdm\n",
"\n",
"for epoch in range(10):\n",
" model.train()\n",
"\n",
" with
tqdm.
tqdm(train_dataloader) as tq:\n",
" with tqdm(train_dataloader) as tq:\n",
" for step, data in enumerate(tq):\n",
" x = data.node_features[\"feat\"]\n",
" labels = data.labels\n",
...
...
@@ -328,7 +328,7 @@
"\n",
" predictions = []\n",
" labels = []\n",
" with
tqdm.
tqdm(valid_dataloader) as tq, torch.no_grad():\n",
" with tqdm(valid_dataloader) as tq, torch.no_grad():\n",
" for data in tq:\n",
" x = data.node_features[\"feat\"]\n",
" labels.append(data.labels.cpu().numpy())\n",
...
...
python/dgl/data/lrgb.py
View file @
1547bd93
...
...
@@ -4,7 +4,7 @@ import pickle
import
pandas
as
pd
from
ogb.utils
import
smiles2graph
as
smiles2graph_OGB
from
tqdm
import
tqdm
from
tqdm
.auto
import
tqdm
from
..
import
backend
as
F
...
...
python/dgl/data/superpixel.py
View file @
1547bd93
...
...
@@ -3,7 +3,7 @@ import pickle
import
numpy
as
np
from
scipy.spatial.distance
import
cdist
from
tqdm
import
tqdm
from
tqdm
.auto
import
tqdm
from
..
import
backend
as
F
from
..convert
import
graph
as
dgl_graph
...
...
python/dgl/data/utils.py
View file @
1547bd93
...
...
@@ -12,7 +12,7 @@ import networkx.algorithms as A
import
numpy
as
np
import
requests
from
tqdm
import
tqdm
from
tqdm
.auto
import
tqdm
from
..
import
backend
as
F
from
.graph_serialize
import
load_graphs
,
load_labels
,
save_graphs
...
...
python/dgl/nn/pytorch/explain/gnnexplainer.py
View file @
1547bd93
...
...
@@ -5,7 +5,7 @@ from math import sqrt
import
torch
from
torch
import
nn
from
tqdm
import
tqdm
from
tqdm
.auto
import
tqdm
from
....base
import
EID
,
NID
from
....subgraph
import
khop_in_subgraph
...
...
python/dgl/nn/pytorch/network_emb.py
View file @
1547bd93
"""Network Embedding NN Modules"""
# pylint: disable= invalid-name
import
random
import
torch
import
torch.nn.functional
as
F
import
tqdm
from
torch
import
nn
from
torch.nn
import
init
from
tqdm.auto
import
trange
from
...base
import
NID
from
...convert
import
to_heterogeneous
,
to_homogeneous
...
...
@@ -340,7 +341,7 @@ class MetaPath2Vec(nn.Module):
num_nodes_total
=
hg
.
num_nodes
()
node_frequency
=
torch
.
zeros
(
num_nodes_total
)
# random walk
for
idx
in
tqdm
.
trange
(
hg
.
num_nodes
(
node_metapath
[
0
])):
for
idx
in
trange
(
hg
.
num_nodes
(
node_metapath
[
0
])):
traces
,
_
=
random_walk
(
g
=
hg
,
nodes
=
[
idx
],
metapath
=
metapath
)
for
tr
in
traces
.
cpu
().
numpy
():
tr_nids
=
[
...
...
script/dgl_dev.yml.template
View file @
1547bd93
...
...
@@ -47,5 +47,7 @@ dependencies:
- clang-format
- pylint
- lintrunner
- jupyterlab
- ipywidgets
variables:
DGL_HOME: __DGL_HOME__
tutorials/models/4_old_wines/7_transformer.py
View file @
1547bd93
...
...
@@ -589,7 +589,7 @@ Transformer as a Graph Neural Network
#
# .. code:: python
#
# from tqdm import tqdm
# from tqdm
.auto
import tqdm
# import torch as th
# import numpy as np
#
...
...
tutorials/multi/2_node_classification.py
View file @
1547bd93
...
...
@@ -20,7 +20,6 @@ models with multi-GPU with ``DistributedDataParallel``.
"""
######################################################################
# Importing Packages
# ---------------
...
...
@@ -42,9 +41,9 @@ import torch.multiprocessing as mp
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torchmetrics.functional
as
MF
import
tqdm
from
torch.distributed.algorithms.join
import
Join
from
torch.nn.parallel
import
DistributedDataParallel
as
DDP
from
tqdm.auto
import
tqdm
######################################################################
...
...
@@ -155,7 +154,7 @@ def evaluate(rank, model, graph, features, itemset, num_classes, device):
is_train
=
False
,
)
for
data
in
tqdm
.
tqdm
(
dataloader
)
if
rank
==
0
else
dataloader
:
for
data
in
tqdm
(
dataloader
)
if
rank
==
0
else
dataloader
:
blocks
=
data
.
blocks
x
=
data
.
node_features
[
"feat"
]
y
.
append
(
data
.
labels
)
...
...
@@ -212,7 +211,7 @@ def train(
total_loss
=
torch
.
tensor
(
0
,
dtype
=
torch
.
float
,
device
=
device
)
num_train_items
=
0
with
Join
([
model
]):
for
data
in
tqdm
.
tqdm
(
dataloader
)
if
rank
==
0
else
dataloader
:
for
data
in
tqdm
(
dataloader
)
if
rank
==
0
else
dataloader
:
# The input features are from the source nodes in the first
# layer's computation graph.
x
=
data
.
node_features
[
"feat"
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment