@@ -24,16 +24,21 @@ DGL is an easy-to-use, high performance and scalable Python package for deep lea
...
@@ -24,16 +24,21 @@ DGL is an easy-to-use, high performance and scalable Python package for deep lea
**A data scientist** may want to apply a pre-trained model to your data right away. For this you can use DGL's [Application packages, formally *Model Zoo*](https://github.com/dmlc/dgl/tree/master/apps). Application packages are developed for domain applications, as is the case for [DGL-LifeScience](https://github.com/dmlc/dgl/tree/master/apps/life_sci). We will soon add model zoo for knowledge graph embedding learning and recommender systems. Here's how you will use a pretrained model:
**A data scientist** may want to apply a pre-trained model to your data right away. For this you can use DGL's [Application packages, formally *Model Zoo*](https://github.com/dmlc/dgl/tree/master/apps). Application packages are developed for domain applications, as is the case for [DGL-LifeScience](https://github.com/dmlc/dgl/tree/master/apps/life_sci). We will soon add model zoo for knowledge graph embedding learning and recommender systems. Here's how you will use a pretrained model:
**Further reading**: DGL is released as a managed service on AWS SageMaker, see the medium posts for an easy trip to DGL on SageMaker([part1](https://medium.com/@julsimon/a-primer-on-graph-neural-networks-with-amazon-neptune-and-the-deep-graph-library-5ce64984a276) and [part2](https://medium.com/@julsimon/deep-graph-library-part-2-training-on-amazon-sagemaker-54d318dfc814)).
**Further reading**: DGL is released as a managed service on AWS SageMaker, see the medium posts for an easy trip to DGL on SageMaker([part1](https://medium.com/@julsimon/a-primer-on-graph-neural-networks-with-amazon-neptune-and-the-deep-graph-library-5ce64984a276) and [part2](https://medium.com/@julsimon/deep-graph-library-part-2-training-on-amazon-sagemaker-54d318dfc814)).