Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
0d1b2c5a
Unverified
Commit
0d1b2c5a
authored
Jul 06, 2022
by
Chang Liu
Committed by
GitHub
Jul 07, 2022
Browse files
[Example] Update README file of eges example (#4220)
parent
885be178
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
10 additions
and
33 deletions
+10
-33
examples/pytorch/eges/README.md
examples/pytorch/eges/README.md
+10
-33
No files found.
examples/pytorch/eges/README.md
View file @
0d1b2c5a
# DGL & Pytorch implementation of Enhanced Graph Embedding with Side information (EGES)
# DGL & Pytorch implementation of Enhanced Graph Embedding with Side information (EGES)
Paper link: https://arxiv.org/pdf/1803.02349.pdf
## Version
Reference code repo: (https://github.com/wangzhegeek/EGES.git)
dgl==0.6.1, torch==1.9.0
## Paper
Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba:
https://arxiv.org/pdf/1803.02349.pdf
https://arxiv.org/abs/1803.02349
## How to run
## How to run
Create folder named
`data`
. Download two csv files from
[
here
](
https://github.com/Wang-Yu-Qing/dgl_data/tree/master/eges_data
)
into the
`data`
folder.
Run command:
`python main.py`
with default configuration, and the following message will shown up:
-
Create a folder named
`data`
.
`mkdir data`
-
Download csv data
`wget https://raw.githubusercontent.com/Wang-Yu-Qing/dgl_data/master/eges_data/action_head.csv -P data/`
`wget https://raw.githubusercontent.com/Wang-Yu-Qing/dgl_data/master/eges_data/jdata_product.csv -P data/`
-
Run with the following command (with default configuration)
`python main.py`
## Result
```
```
Using backend: pytorch
Num skus: 33344, num brands: 3662, num shops: 4785, num cates: 79
Epoch 00000 | Step 00000 | Step Loss 0.9117 | Epoch Avg Loss: 0.9117
Epoch 00000 | Step 00100 | Step Loss 0.8736 | Epoch Avg Loss: 0.8801
Epoch 00000 | Step 00200 | Step Loss 0.8975 | Epoch Avg Loss: 0.8785
Evaluate link prediction AUC: 0.6864
Epoch 00001 | Step 00000 | Step Loss 0.8695 | Epoch Avg Loss: 0.8695
Epoch 00001 | Step 00100 | Step Loss 0.8290 | Epoch Avg Loss: 0.8643
Epoch 00001 | Step 00200 | Step Loss 0.8012 | Epoch Avg Loss: 0.8604
Evaluate link prediction AUC: 0.6875
...
Epoch 00029 | Step 00000 | Step Loss 0.7095 | Epoch Avg Loss: 0.7095
Epoch 00029 | Step 00100 | Step Loss 0.7248 | Epoch Avg Loss: 0.7139
Epoch 00029 | Step 00200 | Step Loss 0.7123 | Epoch Avg Loss: 0.7134
Evaluate link prediction AUC: 0.7084
Evaluate link prediction AUC: 0.7084
```
```
The AUC of link-prediction task on test graph is computed after each epoch is done.
## Reference
https://github.com/nonva/eges
https://github.com/wangzhegeek/EGES.git
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment