# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import io import logging import os from dataclasses import dataclass from typing import Any, Dict, Iterable, List, Optional from fvcore.common.file_io import PathManager from fvcore.common.timer import Timer from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.structures import BoxMode DENSEPOSE_MASK_KEY = "dp_masks" DENSEPOSE_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_I", "dp_U", "dp_V"] DENSEPOSE_KEYS = DENSEPOSE_KEYS_WITHOUT_MASK + [DENSEPOSE_MASK_KEY] DENSEPOSE_METADATA_URL_PREFIX = "https://dl.fbaipublicfiles.com/densepose/data/" @dataclass class CocoDatasetInfo: name: str images_root: str annotations_fpath: str DATASETS = [ CocoDatasetInfo( name="densepose_coco_2014_train", images_root="coco/train2014", annotations_fpath="coco/annotations/densepose_train2014.json", ), CocoDatasetInfo( name="densepose_coco_2014_minival", images_root="coco/val2014", annotations_fpath="coco/annotations/densepose_minival2014.json", ), CocoDatasetInfo( name="densepose_coco_2014_minival_100", images_root="coco/val2014", annotations_fpath="coco/annotations/densepose_minival2014_100.json", ), CocoDatasetInfo( name="densepose_coco_2014_valminusminival", images_root="coco/val2014", annotations_fpath="coco/annotations/densepose_valminusminival2014.json", ), CocoDatasetInfo( name="densepose_chimps", images_root="densepose_evolution/densepose_chimps", annotations_fpath="densepose_evolution/annotations/densepose_chimps_densepose.json", ), ] BASE_DATASETS = [ CocoDatasetInfo( name="base_coco_2017_train", images_root="coco/train2017", annotations_fpath="coco/annotations/instances_train2017.json", ), CocoDatasetInfo( name="base_coco_2017_val", images_root="coco/val2017", annotations_fpath="coco/annotations/instances_val2017.json", ), CocoDatasetInfo( name="base_coco_2017_val_100", images_root="coco/val2017", annotations_fpath="coco/annotations/instances_val2017_100.json", ), ] def _is_relative_local_path(path: os.PathLike): path_str = os.fsdecode(path) return ("://" not in path_str) and not os.path.isabs(path) def _maybe_prepend_base_path(base_path: Optional[os.PathLike], path: os.PathLike): """ Prepends the provided path with a base path prefix if: 1) base path is not None; 2) path is a local path """ if base_path is None: return path if _is_relative_local_path(path): return os.path.join(base_path, path) return path def get_metadata(base_path: Optional[os.PathLike]) -> Dict[str, Any]: """ Returns metadata associated with COCO DensePose datasets Args: base_path: Optional[os.PathLike] Base path used to load metadata from Returns: Dict[str, Any] Metadata in the form of a dictionary """ meta = { "densepose_transform_src": _maybe_prepend_base_path( base_path, "UV_symmetry_transforms.mat" ), "densepose_smpl_subdiv": _maybe_prepend_base_path(base_path, "SMPL_subdiv.mat"), "densepose_smpl_subdiv_transform": _maybe_prepend_base_path( base_path, "SMPL_SUBDIV_TRANSFORM.mat" ), } return meta def _load_coco_annotations(json_file: str): """ Load COCO annotations from a JSON file Args: json_file: str Path to the file to load annotations from Returns: Instance of `pycocotools.coco.COCO` that provides access to annotations data """ from pycocotools.coco import COCO logger = logging.getLogger(__name__) timer = Timer() with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) if timer.seconds() > 1: logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) return coco_api def _add_categories_metadata(dataset_name: str, categories: Dict[str, Any]): meta = MetadataCatalog.get(dataset_name) meta.categories = {c["id"]: c["name"] for c in categories} logger = logging.getLogger(__name__) logger.info("Dataset {} categories: {}".format(dataset_name, categories)) def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]): if "minival" in json_file: # Skip validation on COCO2014 valminusminival and minival annotations # The ratio of buggy annotations there is tiny and does not affect accuracy # Therefore we explicitly white-list them return ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format( json_file ) def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]): if "bbox" not in ann_dict: return obj["bbox"] = ann_dict["bbox"] obj["bbox_mode"] = BoxMode.XYWH_ABS def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]): if "segmentation" not in ann_dict: return segm = ann_dict["segmentation"] if not isinstance(segm, dict): # filter out invalid polygons (< 3 points) segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] if len(segm) == 0: return obj["segmentation"] = segm def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]): if "keypoints" not in ann_dict: return keypts = ann_dict["keypoints"] # list[int] for idx, v in enumerate(keypts): if idx % 3 != 2: # COCO's segmentation coordinates are floating points in [0, H or W], # but keypoint coordinates are integers in [0, H-1 or W-1] # Therefore we assume the coordinates are "pixel indices" and # add 0.5 to convert to floating point coordinates. keypts[idx] = v + 0.5 obj["keypoints"] = keypts def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]): for key in DENSEPOSE_KEYS: if key in ann_dict: obj[key] = ann_dict[key] def _combine_images_with_annotations( dataset_name: str, image_root: str, img_datas: Iterable[Dict[str, Any]], ann_datas: Iterable[Iterable[Dict[str, Any]]], ): ann_keys = ["iscrowd", "category_id"] dataset_dicts = [] for img_dict, ann_dicts in zip(img_datas, ann_datas): record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["image_id"] = img_dict["id"] record["dataset"] = dataset_name objs = [] for ann_dict in ann_dicts: assert ann_dict["image_id"] == record["image_id"] assert ann_dict.get("ignore", 0) == 0 obj = {key: ann_dict[key] for key in ann_keys if key in ann_dict} _maybe_add_bbox(obj, ann_dict) _maybe_add_segm(obj, ann_dict) _maybe_add_keypoints(obj, ann_dict) _maybe_add_densepose(obj, ann_dict) objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) return dataset_dicts def load_coco_json(annotations_json_file: str, image_root: str, dataset_name: str): """ Loads a JSON file with annotations in COCO instances format. Replaces `detectron2.data.datasets.coco.load_coco_json` to handle metadata in a more flexible way. Postpones category mapping to a later stage to be able to combine several datasets with different (but coherent) sets of categories. Args: annotations_json_file: str Path to the JSON file with annotations in COCO instances format. image_root: str directory that contains all the images dataset_name: str the name that identifies a dataset, e.g. "densepose_coco_2014_train" extra_annotation_keys: Optional[List[str]] If provided, these keys are used to extract additional data from the annotations. """ coco_api = _load_coco_annotations(PathManager.get_local_path(annotations_json_file)) _add_categories_metadata(dataset_name, coco_api.loadCats(coco_api.getCatIds())) # sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) # imgs is a list of dicts, each looks something like: # {'license': 4, # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', # 'file_name': 'COCO_val2014_000000001268.jpg', # 'height': 427, # 'width': 640, # 'date_captured': '2013-11-17 05:57:24', # 'id': 1268} imgs = coco_api.loadImgs(img_ids) logger = logging.getLogger(__name__) logger.info("Loaded {} images in COCO format from {}".format(len(imgs), annotations_json_file)) # anns is a list[list[dict]], where each dict is an annotation # record for an object. The inner list enumerates the objects in an image # and the outer list enumerates over images. anns = [coco_api.imgToAnns[img_id] for img_id in img_ids] _verify_annotations_have_unique_ids(annotations_json_file, anns) dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns) return dataset_records def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[os.PathLike] = None): """ Registers provided COCO DensePose dataset Args: dataset_data: CocoDatasetInfo Dataset data datasets_root: Optional[os.PathLike] Datasets root folder (default: None) """ annotations_fpath = _maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath) images_root = _maybe_prepend_base_path(datasets_root, dataset_data.images_root) def load_annotations(): return load_coco_json( annotations_json_file=annotations_fpath, image_root=images_root, dataset_name=dataset_data.name, ) DatasetCatalog.register(dataset_data.name, load_annotations) MetadataCatalog.get(dataset_data.name).set( json_file=annotations_fpath, image_root=images_root, **get_metadata(DENSEPOSE_METADATA_URL_PREFIX) ) def register_datasets( datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[os.PathLike] = None ): """ Registers provided COCO DensePose datasets Args: datasets_data: Iterable[CocoDatasetInfo] An iterable of dataset datas datasets_root: Optional[os.PathLike] Datasets root folder (default: None) """ for dataset_data in datasets_data: register_dataset(dataset_data, datasets_root)