Commit c732df65 authored by limm's avatar limm
Browse files

push v0.1.3 version commit bd2ea47

parent 5b3792fc
Pipeline #706 failed with stages
in 0 seconds
_BASE_: "../Base-RetinaNet.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
RESNETS:
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RetinaNet.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS:
DEPTH: 50
_BASE_: "../Base-RetinaNet.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
META_ARCHITECTURE: "ProposalNetwork"
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: False
RESNETS:
DEPTH: 50
RPN:
PRE_NMS_TOPK_TEST: 12000
POST_NMS_TOPK_TEST: 2000
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
META_ARCHITECTURE: "ProposalNetwork"
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: False
RESNETS:
DEPTH: 50
RPN:
POST_NMS_TOPK_TEST: 2000
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON: True
RESNETS:
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-DilatedC5.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON: True
RESNETS:
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON: True
RESNETS:
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
RESNETS:
DEPTH: 50
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-DilatedC5.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
RESNETS:
DEPTH: 50
_BASE_: "../Base-RCNN-DilatedC5.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
RESNETS:
DEPTH: 50
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
MASK_ON: True
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
PIXEL_STD: [57.375, 57.120, 58.395]
RESNETS:
STRIDE_IN_1X1: False # this is a C2 model
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
KEYPOINT_ON: True
ROI_HEADS:
NUM_CLASSES: 1
ROI_BOX_HEAD:
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
RPN:
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
# 1000 proposals per-image is found to hurt box AP.
# Therefore we increase it to 1500 per-image.
POST_NMS_TOPK_TRAIN: 1500
DATASETS:
TRAIN: ("keypoints_coco_2017_train",)
TEST: ("keypoints_coco_2017_val",)
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
RESNETS:
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS:
DEPTH: 50
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
PIXEL_STD: [57.375, 57.120, 58.395]
RESNETS:
STRIDE_IN_1X1: False # this is a C2 model
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
DEPTH: 101
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment