Commit bbca342c authored by limm's avatar limm
Browse files

add README.md

parent c732df65
<img src=".github/Detectron2-Logo-Horz.svg" width="300" > # <div aligh="center"><strong>Detectron2</strong></div>
## 简介
Detectron2 is Facebook AI Research's next generation software system Detectron2 是 Facebook AI Research 的下一代软件系统实现最先进的对象检测算法
that implements state-of-the-art object detection algorithms.
It is a ground-up rewrite of the previous version, ### 使用pip方式安装
[Detectron](https://github.com/facebookresearch/Detectron/), detectron2 whl包下载目录:[http://10.6.10.68:8000/customized/detectron2/dtk2310/](http://10.6.10.68:8000/customized/detectron2/dtk2310/). 目前只提供有python3.8版本的安装包
and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/). ```shell
pip install detectron2* (下载的detectron2的whl包)
<div align="center"> ```
<img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/> ### 使用源码编译方式安装
</div>
#### 编译环境准备
### What's New - 安装相关依赖
* It is powered by the [PyTorch](https://pytorch.org) deep learning framework. ```shell
* Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc. pip install numpy
* Can be used as a library to support [different projects](projects/) on top of it. pip install 'urllib3==1.26.14'
We'll open source more research projects in this way. pip insta;; wheel
* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html). ```
- 在首页 | 光合开发者社区下载 det23.10 解压在 /opt/ 路径下,并建立软连接,例如:
See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/) ```shell
to see more demos and learn about detectron2. cd /opt
wget http://10.6.10.68:8000/dtk-release/dtk23.10/CentOS7.6/DTK-23.10-CentOS7.6-x86_64.tar.gz
## Installation tar -zxvf DTK-23.10-CentOS7.6-x86_64.tar.gz
ln -s dtk-23.10 dtk
See [INSTALL.md](INSTALL.md). source /opt/dtk/env.sh
```
## Quick Start
See [GETTING_STARTED.md](GETTING_STARTED.md),
or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
Learn more at our [documentation](https://detectron2.readthedocs.org).
And see [projects/](projects/) for some projects that are built on top of detectron2.
## Model Zoo and Baselines
We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
## License
Detectron2 is released under the [Apache 2.0 license](LICENSE). - 安装pytorch. pytorch whl包下载目录: [http://10.6.10.68:8000/debug/pytorch/dtk23.10/hipify](http://10.6.10.68:8000/debug/pytorch/dtk23.10/hipify). 根据需求下载对应的版本,安装如下:
```shell
pip install torch* (下载的torch的whl包)
```
#### 源码下载编译安装
```shell
git clone -b v0.1.3-release http://developer.hpccube.com/codes/aicomponent/detectron2.git
python pymap_script.py /path/to/detectron2
python -m pip install -e detectron2
```
## Citing Detectron2 ## 单侧
```shell
cd detectron2
python -m unittest discover -v -s ./tests
```
If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry. ## Known Issue
```
```
```BibTeX ## 参考资料
@misc{wu2019detectron2, ```shell
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and https://github.com/facebookresearch/detectron2.git
Wan-Yen Lo and Ross Girshick},
title = {Detectron2},
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
year = {2019}
}
``` ```
<img src=".github/Detectron2-Logo-Horz.svg" width="300" >
Detectron2 is Facebook AI Research's next generation software system
that implements state-of-the-art object detection algorithms.
It is a ground-up rewrite of the previous version,
[Detectron](https://github.com/facebookresearch/Detectron/),
and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
<div align="center">
<img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
</div>
### What's New
* It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
* Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
* Can be used as a library to support [different projects](projects/) on top of it.
We'll open source more research projects in this way.
* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
to see more demos and learn about detectron2.
## Installation
See [INSTALL.md](INSTALL.md).
## Quick Start
See [GETTING_STARTED.md](GETTING_STARTED.md),
or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
Learn more at our [documentation](https://detectron2.readthedocs.org).
And see [projects/](projects/) for some projects that are built on top of detectron2.
## Model Zoo and Baselines
We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
## License
Detectron2 is released under the [Apache 2.0 license](LICENSE).
## Citing Detectron2
If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
```BibTeX
@misc{wu2019detectron2,
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
Wan-Yen Lo and Ross Girshick},
title = {Detectron2},
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
year = {2019}
}
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment