Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
detectron2
Commits
b634945d
Commit
b634945d
authored
Apr 09, 2025
by
limm
Browse files
support v0.6
parent
5b3792fc
Changes
696
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
378 additions
and
0 deletions
+378
-0
configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
...-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
+34
-0
configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
...-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
+35
-0
configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
+15
-0
configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
+8
-0
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py
+8
-0
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
+5
-0
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
+8
-0
configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
+12
-0
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
+11
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
+8
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py
+8
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
+5
-0
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
+8
-0
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
+27
-0
configs/Detectron1-Comparisons/README.md
configs/Detectron1-Comparisons/README.md
+84
-0
configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
...Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
+17
-0
configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
...igs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
+27
-0
configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
...s/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
+20
-0
configs/LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
...LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
+19
-0
configs/LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
.../LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
+19
-0
No files found.
configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
0 → 100644
View file @
b634945d
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_fpn
import
model
from
..common.train
import
train
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Replace default ResNet with RegNetX-4GF from the DDS paper. Config source:
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
23
,
w_a
=
38.65
,
w_0
=
96
,
w_m
=
2.43
,
group_width
=
40
,
freeze_at
=
2
,
norm
=
"FrozenBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
optimizer
.
weight_decay
=
5e-5
train
.
init_checkpoint
=
(
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth"
)
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
0 → 100644
View file @
b634945d
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_fpn
import
model
from
..common.train
import
train
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Replace default ResNet with RegNetY-4GF from the DDS paper. Config source:
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml#L4-L10 # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
22
,
w_a
=
31.41
,
w_0
=
96
,
w_m
=
2.24
,
group_width
=
64
,
se_ratio
=
0.25
,
freeze_at
=
2
,
norm
=
"FrozenBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
optimizer
.
weight_decay
=
5e-5
train
.
init_checkpoint
=
(
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906838/RegNetY-4.0GF_dds_8gpu.pyth"
)
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
KEYPOINT_ON
:
True
ROI_HEADS
:
NUM_CLASSES
:
1
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
0.5
# Keypoint AP degrades (though box AP improves) when using plain L1 loss
RPN
:
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
# 1000 proposals per-image is found to hurt box AP.
# Therefore we increase it to 1500 per-image.
POST_NMS_TOPK_TRAIN
:
1500
DATASETS
:
TRAIN
:
("keypoints_coco_2017_train",)
TEST
:
("keypoints_coco_2017_val",)
configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Keypoint-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
RESNETS
:
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py
0 → 100644
View file @
b634945d
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco_keypoint
import
dataloader
from
..common.models.keypoint_rcnn_fpn
import
model
from
..common.train
import
train
model
.
backbone
.
bottom_up
.
freeze_at
=
2
train
.
init_checkpoint
=
"detectron2://ImageNetPretrained/MSRA/R-50.pkl"
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Keypoint-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Keypoint-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Keypoint-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
PIXEL_STD
:
[
57.375
,
57.120
,
58.395
]
RESNETS
:
STRIDE_IN_1X1
:
False
# this is a C2 model
NUM_GROUPS
:
32
WIDTH_PER_GROUP
:
8
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
META_ARCHITECTURE
:
"
PanopticFPN"
MASK_ON
:
True
SEM_SEG_HEAD
:
LOSS_WEIGHT
:
0.5
DATASETS
:
TRAIN
:
("coco_2017_train_panoptic_separated",)
TEST
:
("coco_2017_val_panoptic_separated",)
DATALOADER
:
FILTER_EMPTY_ANNOTATIONS
:
False
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
RESNETS
:
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py
0 → 100644
View file @
b634945d
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco_panoptic_separated
import
dataloader
from
..common.models.panoptic_fpn
import
model
from
..common.train
import
train
model
.
backbone
.
bottom_up
.
freeze_at
=
2
train
.
init_checkpoint
=
"detectron2://ImageNetPretrained/MSRA/R-50.pkl"
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
Base-Panoptic-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
# For better, more stable performance initialize from COCO
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
MASK_ON
:
True
ROI_HEADS
:
NUM_CLASSES
:
8
# This is similar to the setting used in Mask R-CNN paper, Appendix A
# But there are some differences, e.g., we did not initialize the output
# layer using the corresponding classes from COCO
INPUT
:
MIN_SIZE_TRAIN
:
(800, 832, 864, 896, 928, 960, 992, 1024)
MIN_SIZE_TRAIN_SAMPLING
:
"
choice"
MIN_SIZE_TEST
:
1024
MAX_SIZE_TRAIN
:
2048
MAX_SIZE_TEST
:
2048
DATASETS
:
TRAIN
:
("cityscapes_fine_instance_seg_train",)
TEST
:
("cityscapes_fine_instance_seg_val",)
SOLVER
:
BASE_LR
:
0.01
STEPS
:
(18000,)
MAX_ITER
:
24000
IMS_PER_BATCH
:
8
TEST
:
EVAL_PERIOD
:
8000
configs/Detectron1-Comparisons/README.md
0 → 100644
View file @
b634945d
Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
The differences in implementation details are shared in
[
Compatibility with Other Libraries
](
../../docs/notes/compatibility.md
)
.
The differences in model zoo's experimental settings include:
*
Use scale augmentation during training. This improves AP with lower training cost.
*
Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
affect other AP.
*
Use
`POOLER_SAMPLING_RATIO=0`
instead of 2. This does not significantly affect AP.
*
Use
`ROIAlignV2`
. This does not significantly affect AP.
In this directory, we provide a few configs that __do not__ have the above changes.
They mimic Detectron's behavior as close as possible,
and provide a fair comparison of accuracy and speed against Detectron.
<!--
./gen_html_table.py --config 'Detectron1-Comparisons/
*
.yaml' --name "Faster R-CNN" "Keypoint R-CNN" "Mask R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP keypoint_AP --base-dir ../../../configs/Detectron1-Comparisons
-->
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th
valign=
"bottom"
>
Name
</th>
<th
valign=
"bottom"
>
lr
<br/>
sched
</th>
<th
valign=
"bottom"
>
train
<br/>
time
<br/>
(s/iter)
</th>
<th
valign=
"bottom"
>
inference
<br/>
time
<br/>
(s/im)
</th>
<th
valign=
"bottom"
>
train
<br/>
mem
<br/>
(GB)
</th>
<th
valign=
"bottom"
>
box
<br/>
AP
</th>
<th
valign=
"bottom"
>
mask
<br/>
AP
</th>
<th
valign=
"bottom"
>
kp.
<br/>
AP
</th>
<th
valign=
"bottom"
>
model id
</th>
<th
valign=
"bottom"
>
download
</th>
<!-- TABLE BODY -->
<!-- ROW: faster_rcnn_R_50_FPN_noaug_1x -->
<tr><td
align=
"left"
><a
href=
"faster_rcnn_R_50_FPN_noaug_1x.yaml"
>
Faster R-CNN
</a></td>
<td
align=
"center"
>
1x
</td>
<td
align=
"center"
>
0.219
</td>
<td
align=
"center"
>
0.038
</td>
<td
align=
"center"
>
3.1
</td>
<td
align=
"center"
>
36.9
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
>
137781054
</td>
<td
align=
"center"
><a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/model_final_7ab50c.pkl"
>
model
</a>
|
<a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/metrics.json"
>
metrics
</a></td>
</tr>
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
<tr><td
align=
"left"
><a
href=
"keypoint_rcnn_R_50_FPN_1x.yaml"
>
Keypoint R-CNN
</a></td>
<td
align=
"center"
>
1x
</td>
<td
align=
"center"
>
0.313
</td>
<td
align=
"center"
>
0.071
</td>
<td
align=
"center"
>
5.0
</td>
<td
align=
"center"
>
53.1
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
64.2
</td>
<td
align=
"center"
>
137781195
</td>
<td
align=
"center"
><a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/model_final_cce136.pkl"
>
model
</a>
|
<a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/metrics.json"
>
metrics
</a></td>
</tr>
<!-- ROW: mask_rcnn_R_50_FPN_noaug_1x -->
<tr><td
align=
"left"
><a
href=
"mask_rcnn_R_50_FPN_noaug_1x.yaml"
>
Mask R-CNN
</a></td>
<td
align=
"center"
>
1x
</td>
<td
align=
"center"
>
0.273
</td>
<td
align=
"center"
>
0.043
</td>
<td
align=
"center"
>
3.4
</td>
<td
align=
"center"
>
37.8
</td>
<td
align=
"center"
>
34.9
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
137781281
</td>
<td
align=
"center"
><a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/model_final_62ca52.pkl"
>
model
</a>
|
<a
href=
"https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/metrics.json"
>
metrics
</a></td>
</tr>
</tbody></table>
## Comparisons:
*
Faster R-CNN: Detectron's AP is 36.7, similar to ours.
*
Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
[
bug
](
https://github.com/facebookresearch/Detectron/issues/459
)
lead to a drop in box AP, and can be
compensated back by some parameter tuning.
*
Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
See
[
this article
](
https://ppwwyyxx.com/blog/2021/Where-are-Pixels/
)
for details.
For speed comparison, see
[
benchmarks
](
https://detectron2.readthedocs.io/notes/benchmarks.html
)
.
configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
# Detectron1 uses smooth L1 loss with some magic beta values.
# The defaults are changed to L1 loss in Detectron2.
RPN
:
SMOOTH_L1_BETA
:
0.1111
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
INPUT
:
# no scale augmentation
MIN_SIZE_TRAIN
:
(800, )
configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
# Detectron1 uses smooth L1 loss with some magic beta values.
# The defaults are changed to L1 loss in Detectron2.
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
RPN
:
SMOOTH_L1_BETA
:
0.1111
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2
# 1000 proposals per-image is found to hurt box AP.
# Therefore we increase it to 1500 per-image.
POST_NMS_TOPK_TRAIN
:
1500
DATASETS
:
TRAIN
:
("keypoints_coco_2017_train",)
TEST
:
("keypoints_coco_2017_val",)
configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
# Detectron1 uses smooth L1 loss with some magic beta values.
# The defaults are changed to L1 loss in Detectron2.
RPN
:
SMOOTH_L1_BETA
:
0.1111
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
ROI_MASK_HEAD
:
POOLER_SAMPLING_RATIO
:
2
POOLER_TYPE
:
"
ROIAlign"
INPUT
:
# no scale augmentation
MIN_SIZE_TRAIN
:
(800, )
configs/LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
101
ROI_HEADS
:
NUM_CLASSES
:
1230
SCORE_THRESH_TEST
:
0.0001
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
DATASETS
:
TRAIN
:
("lvis_v0.5_train",)
TEST
:
("lvis_v0.5_val",)
TEST
:
DETECTIONS_PER_IMAGE
:
300
# LVIS allows up to 300
DATALOADER
:
SAMPLER_TRAIN
:
"
RepeatFactorTrainingSampler"
REPEAT_THRESHOLD
:
0.001
configs/LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
NUM_CLASSES
:
1230
SCORE_THRESH_TEST
:
0.0001
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
DATASETS
:
TRAIN
:
("lvis_v0.5_train",)
TEST
:
("lvis_v0.5_val",)
TEST
:
DETECTIONS_PER_IMAGE
:
300
# LVIS allows up to 300
DATALOADER
:
SAMPLER_TRAIN
:
"
RepeatFactorTrainingSampler"
REPEAT_THRESHOLD
:
0.001
Prev
1
2
3
4
5
6
7
…
35
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment