Commit b634945d authored by limm's avatar limm
Browse files

support v0.6

parent 5b3792fc
from .mask_rcnn_R_50_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
train.max_iter *= 4 # 100ep -> 400ep
lr_multiplier.scheduler.milestones = [
milestone * 4 for milestone in lr_multiplier.scheduler.milestones
]
lr_multiplier.scheduler.num_updates = train.max_iter
from .mask_rcnn_R_50_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
train.max_iter //= 2 # 100ep -> 50ep
lr_multiplier.scheduler.milestones = [
milestone // 2 for milestone in lr_multiplier.scheduler.milestones
]
lr_multiplier.scheduler.num_updates = train.max_iter
from .mask_rcnn_R_50_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import RegNet
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py # noqa
model.backbone.bottom_up = L(RegNet)(
stem_class=SimpleStem,
stem_width=32,
block_class=ResBottleneckBlock,
depth=23,
w_a=38.65,
w_0=96,
w_m=2.43,
group_width=40,
norm="SyncBN",
out_features=["s1", "s2", "s3", "s4"],
)
model.pixel_std = [57.375, 57.120, 58.395]
# RegNets benefit from enabling cudnn benchmark mode
train.cudnn_benchmark = True
from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
train.max_iter *= 2 # 100ep -> 200ep
lr_multiplier.scheduler.milestones = [
milestone * 2 for milestone in lr_multiplier.scheduler.milestones
]
lr_multiplier.scheduler.num_updates = train.max_iter
from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
train.max_iter *= 4 # 100ep -> 400ep
lr_multiplier.scheduler.milestones = [
milestone * 4 for milestone in lr_multiplier.scheduler.milestones
]
lr_multiplier.scheduler.num_updates = train.max_iter
from .mask_rcnn_R_50_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import RegNet
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py # noqa
model.backbone.bottom_up = L(RegNet)(
stem_class=SimpleStem,
stem_width=32,
block_class=ResBottleneckBlock,
depth=22,
w_a=31.41,
w_0=96,
w_m=2.24,
group_width=64,
se_ratio=0.25,
norm="SyncBN",
out_features=["s1", "s2", "s3", "s4"],
)
model.pixel_std = [57.375, 57.120, 58.395]
# RegNets benefit from enabling cudnn benchmark mode
train.cudnn_benchmark = True
from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
train.max_iter *= 2 # 100ep -> 200ep
lr_multiplier.scheduler.milestones = [
milestone * 2 for milestone in lr_multiplier.scheduler.milestones
]
lr_multiplier.scheduler.num_updates = train.max_iter
from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import (
dataloader,
lr_multiplier,
model,
optimizer,
train,
)
train.max_iter *= 4 # 100ep -> 400ep
lr_multiplier.scheduler.milestones = [
milestone * 4 for milestone in lr_multiplier.scheduler.milestones
]
lr_multiplier.scheduler.num_updates = train.max_iter
These are quick configs for performance or accuracy regression tracking purposes.
* `*instance_test.yaml`: can train on 2 GPUs. They are used to test whether the training can
successfully finish. They are not expected to produce reasonable training results.
* `*inference_acc_test.yaml`: They should be run using `--eval-only`. They run inference using pre-trained models and verify
the results are as expected.
* `*training_acc_test.yaml`: They should be trained on 8 GPUs. They finish in about an hour and verify the training accuracy
is within the normal range.
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
MODEL:
WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
DATASETS:
TEST: ("coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]]
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
DATASETS:
TRAIN: ("coco_2017_val_100",)
TEST: ("coco_2017_val_100",)
SOLVER:
BASE_LR: 0.005
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL:
WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
DATASETS:
TEST: ("coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]]
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
DATASETS:
TRAIN: ("coco_2017_val_100",)
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
TEST: ("coco_2017_val_100",)
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
SOLVER:
BASE_LR: 0.005
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
MODEL:
WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
DATASETS:
TEST: ("keypoints_coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]]
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON: True
ROI_HEADS:
NUM_CLASSES: 1
DATASETS:
TRAIN: ("keypoints_coco_2017_val_100",)
TEST: ("keypoints_coco_2017_val_100",)
SOLVER:
BASE_LR: 0.005
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON: True
RESNETS:
DEPTH: 50
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
NUM_CLASSES: 1
ROI_KEYPOINT_HEAD:
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 2
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: False
LOSS_WEIGHT: 4.0
ROI_BOX_HEAD:
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
RPN:
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
DATASETS:
TRAIN: ("keypoints_coco_2017_val",)
TEST: ("keypoints_coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
SOLVER:
WARMUP_FACTOR: 0.33333333
WARMUP_ITERS: 100
STEPS: (5500, 5800)
MAX_ITER: 6000
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 55.35, 1.0], ["keypoints", "AP", 76.91, 1.0]]
_BASE_: "../Base-RCNN-FPN.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON: True
RESNETS:
DEPTH: 50
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
NUM_CLASSES: 1
ROI_KEYPOINT_HEAD:
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 2
ROI_BOX_HEAD:
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
RPN:
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
DATASETS:
TRAIN: ("keypoints_coco_2017_val",)
TEST: ("keypoints_coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
SOLVER:
WARMUP_FACTOR: 0.33333333
WARMUP_ITERS: 100
STEPS: (5500, 5800)
MAX_ITER: 6000
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 53.5, 1.0], ["keypoints", "AP", 72.4, 1.0]]
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
DATASETS:
TRAIN: ("coco_2017_val_100",)
TEST: ("coco_2017_val_100",)
SOLVER:
BASE_LR: 0.001
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "value"
CLIP_VALUE: 1.0
DATALOADER:
NUM_WORKERS: 2
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
MODEL:
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
DATASETS:
TEST: ("coco_2017_val_100",)
TEST:
EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]]
_BASE_: "../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: True
DATASETS:
TRAIN: ("coco_2017_val_100",)
TEST: ("coco_2017_val_100",)
SOLVER:
BASE_LR: 0.001
STEPS: (30,)
MAX_ITER: 40
IMS_PER_BATCH: 4
DATALOADER:
NUM_WORKERS: 2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment