Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
detectron2
Commits
b634945d
Commit
b634945d
authored
Apr 09, 2025
by
limm
Browse files
support v0.6
parent
5b3792fc
Changes
409
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
311 additions
and
0 deletions
+311
-0
configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
+14
-0
configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py
configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py
+14
-0
configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
+29
-0
configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
+14
-0
configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
+14
-0
configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
+30
-0
configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
+14
-0
configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
+14
-0
configs/quick_schedules/README.md
configs/quick_schedules/README.md
+8
-0
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
...edules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
...ck_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
+11
-0
configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
...uick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
+15
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
..._schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
.../quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
+16
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
.../keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
+30
-0
configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
...k_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
+28
-0
configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
...s/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
+18
-0
configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
...quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
+7
-0
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
+14
-0
No files found.
Too many changes to show.
To preserve performance only
409 of 409+
files are displayed.
Plain diff
Email patch
configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
//=
2
# 100ep -> 50ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
//
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
23
,
w_a
=
38.65
,
w_0
=
96
,
w_m
=
2.43
,
group_width
=
40
,
norm
=
"SyncBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
22
,
w_a
=
31.41
,
w_0
=
96
,
w_m
=
2.24
,
group_width
=
64
,
se_ratio
=
0.25
,
norm
=
"SyncBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
0 → 100644
View file @
b634945d
from
.mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
configs/quick_schedules/README.md
0 → 100644
View file @
b634945d
These are quick configs for performance or accuracy regression tracking purposes.
*
`*instance_test.yaml`
: can train on 2 GPUs. They are used to test whether the training can
successfully finish. They are not expected to produce reasonable training results.
*
`*inference_acc_test.yaml`
: They should be run using
`--eval-only`
. They run inference using pre-trained models and verify
the results are as expected.
*
`*training_acc_test.yaml`
: They should be trained on 8 GPUs. They finish in about an hour and verify the training accuracy
is within the normal range.
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
50.18
,
0.02
],
[
"
segm"
,
"
AP"
,
43.87
,
0.02
]]
configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
45.70
,
0.02
]]
configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
PROPOSAL_FILES_TRAIN
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
TEST
:
("coco_2017_val_100",)
PROPOSAL_FILES_TEST
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
DATASETS
:
TEST
:
("keypoints_coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
52.47
,
0.02
],
[
"
keypoints"
,
"
AP"
,
67.36
,
0.02
]]
configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
ROI_HEADS
:
NUM_CLASSES
:
1
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val_100",)
TEST
:
("keypoints_coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
:
False
LOSS_WEIGHT
:
4.0
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
55.35
,
1.0
],
[
"
keypoints"
,
"
AP"
,
76.91
,
1.0
]]
configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
53.5
,
1.0
],
[
"
keypoints"
,
"
AP"
,
72.4
,
1.0
]]
configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
value"
CLIP_VALUE
:
1.0
DATALOADER
:
NUM_WORKERS
:
2
configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
47.37
,
0.02
],
[
"
segm"
,
"
AP"
,
40.99
,
0.02
]]
configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
0 → 100644
View file @
b634945d
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
Prev
1
2
3
4
5
6
7
8
9
10
…
21
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment