# Running Communication Benchmarks To run benchmarks, there are two options: 1. Run a single communication operation: For example, run with a single large message size:
deepspeed all_reduce.pyScan across message sizes:
deepspeed all_reduce.py --scan2. Run all available communication benchmarks:
deepspeed run_all.pyLike the individual benchmarks, `run_all.py` supports scanning arguments for the max message size, bw-unit, etc. Simply pass the desired arguments to `run_all.py` and they'll be propagated to each comm op.
usage: ds_bench [-h] [--local_rank LOCAL_RANK] [--trials TRIALS] [--warmups WARMUPS] [--maxsize MAXSIZE] [--async-op] [--bw-unit {Gbps,GBps}] [--backend {nccl}] [--dist {deepspeed,torch}] [--scan] [--raw] [--all-reduce] [--all-gather] [--all-to-all]
[--pt2pt] [--broadcast] [--dtype DTYPE] [--mem-factor MEM_FACTOR] [--debug]
optional arguments:
-h, --help show this help message and exit
--local_rank LOCAL_RANK
--trials TRIALS Number of timed iterations
--warmups WARMUPS Number of warmup (non-timed) iterations
--maxsize MAXSIZE Max message size as a power of 2
--async-op Enables non-blocking communication
--bw-unit {Gbps,GBps}
--backend {nccl} Communication library to use
--dist {deepspeed,torch}
Distributed DL framework to use
--scan Enables scanning all message sizes
--raw Print the message size and latency without units
--all-reduce Run all_reduce
--all-gather Run all_gather
--all-to-all Run all_to_all
--pt2pt Run pt2pt
--broadcast Run broadcast
--dtype DTYPE PyTorch tensor dtype
--mem-factor MEM_FACTOR
Proportion of max available GPU memory to use for single-size evals
--debug Enables all_to_all debug prints
Note that `ds_bench` is a pre-packaged wrapper around `run_all.py`. Users can pass the same arguments as well:
Finally, users can choose specific communication operations to run in `run_all.py` or `ds_bench` by passing them as arguments (all operations are run by default). For example:/bin/ds_bench --scan --trials=10
deepspeed run_all.py --scan --all-reduce --all-to-all --broadcast# Adding Communication Benchmarks To add new communication benchmarks, follow this general procedure: 1. Copy a similar benchmark file (e.g. to add `reduce_scatter`, copy `all_reduce.py` as a template) 2. Add a new bw formula in `utils.get_bw`, a new maximum tensor element formula in `utils.max_numel`, and a new arg in `utils.benchmark_parser` 3. Replace comm op calls in new file with find-replace 4. Find a good default `mem_factor` for use in `run_