'''Copyright The Microsoft DeepSpeed Team''' import os import torch import deepspeed from deepspeed.accelerator import get_accelerator class OneLayerNet(torch.nn.Module): def __init__(self, D_in, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super(OneLayerNet, self).__init__() self.linear1 = torch.nn.Linear(D_in, D_out) def forward(self, x): """ In the forward function we accept a Variable of input data and we must return a Variable of output data. We can use Modules defined in the constructor as well as arbitrary operators on Variables. """ h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear1(h_relu) return y_pred def test_literal_device(): model = OneLayerNet(128, 128) os.environ['RANK'] = '0' os.environ['WORLD_SIZE'] = '1' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '8088' os.environ['LOCAL_RANK'] = '0' deepspeed.init_distributed(get_accelerator().communication_backend_name()) deepspeed.initialize(model=model, config='ds_config.json') string = get_accelerator().device_name() #'xpu' or 'cuda' string0 = get_accelerator().device_name(0) #'xpu:0' or 'cuda:0' string1 = get_accelerator().device_name(1) #'xpu:1' or 'cuda:1' #aiss print(string0) print(string1) assert string == 'xpu' or string == 'cuda' assert string0 == 'xpu:0' or string0 == 'cuda:0' assert string1 == 'xpu:1' or string1 == 'cuda:1'