import os import json import argparse import torch class SimpleModel(torch.nn.Module): def __init__(self, hidden_dim, empty_grad=False): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(hidden_dim, hidden_dim) if empty_grad: self.layers2 = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim)]) self.cross_entropy_loss = torch.nn.CrossEntropyLoss() def forward(self, x, y): hidden_dim = x hidden_dim = self.linear(hidden_dim) return self.cross_entropy_loss(hidden_dim, y) def random_dataloader(model, total_samples, hidden_dim, device): batch_size = model.train_micro_batch_size_per_gpu() train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=torch.half) train_label = torch.empty(total_samples, dtype=torch.long, device=device).random_(hidden_dim) train_dataset = torch.utils.data.TensorDataset(train_data, train_label) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size) return train_loader def create_config_from_dict(tmpdir, config_dict): config_path = os.path.join(tmpdir, 'temp_config.json') with open(config_path, 'w') as fd: json.dump(config_dict, fd) return config_path def args_from_dict(tmpdir, config_dict): config_path = create_config_from_dict(tmpdir, config_dict) parser = argparse.ArgumentParser() args = parser.parse_args(args='') args.deepspeed = True args.deepspeed_config = config_path args.local_rank = 0 return args