Commit eadbbe09 authored by 401qingkong's avatar 401qingkong
Browse files

push rocm deepspeed v0.3.13

parent ab5534fc
#pragma once
#include <hip/hip_runtime_api.h>
#include <hiprand.h>
#include <memory>
#include <vector>
#include "rocblas.h"
#include "hip/hip_runtime.h"
#include "hip/dropout.h"
#include "hip/feed_forward.h"
#include "hip/gelu.h"
#include "hip/general_kernels.h"
#include "hip/normalize_layer.h"
#include "hip/softmax.h"
#include "hip/strided_batch_gemm.h"
struct BertGemmAlgos {
int m_gemm_qkv_algo;
int m_gemm_inter_algo;
int m_gemm_output_algo;
int m_gemm_batch1_algo;
int m_gemm_batch2_algo;
BertGemmAlgos()
: m_gemm_qkv_algo(-1),
m_gemm_inter_algo(-1),
m_gemm_output_algo(-1),
m_gemm_batch1_algo(-1),
m_gemm_batch2_algo(-1)
{
}
};
template <typename T>
class BertTransformerLayer {
public:
BertTransformerLayer(int layer_id,
int batch_size,
int hidden_size,
int num_heads,
int intermediate_size,
int seq_length,
float attn_dropout_ratio,
float hidden_output_dropout_ratio,
float layer_norm_eps,
bool pre_or_postLayerNorm,
const std::vector<std::array<int, 3>>& gemm_algos,
bool attn_dropout_checkpoint,
bool normalize_invertible,
bool gelu_checkpoint,
bool stochastic_mode);
virtual ~BertTransformerLayer();
void Forward(int bsz,
const T* input_ptr,
const T* input_mask_ptr,
const T* attn_qkvw_ptr,
const T* attn_qkvb_ptr,
const T* attn_ow_ptr,
const T* attn_ob_ptr,
const T* attn_nw_ptr,
const T* attn_nb_ptr,
const T* inter_w_ptr,
const T* inter_b_ptr,
const T* output_w_ptr,
const T* output_b_ptr,
const T* norm_w_ptr,
const T* norm_b_ptr,
T* out_ptr,
T* inp_norm_ptr,
T* q_tf_ptr,
T* k_tf_ptr,
T* v_tf_ptr,
T* softmax_output_ptr,
T* ctx_bufB_ptr,
T* attn_o_inp_ptr,
T* add_res_ptr,
T* ff1_inp_ptr,
T* gelu_inp_ptr,
T* ff2_inp_ptr);
void Backward(int bsz,
const T* grad_output_ptr,
const T* input_ptr,
const T* output_ptr,
const T* inp_norm_ptr,
const T* q_tf_ptr,
const T* k_tf_ptr,
const T* v_tf_ptr,
const T* softmax_output_ptr,
const T* ctx_bufB_ptr,
const T* attn_o_inp_ptr,
const T* add_res_ptr,
const T* ff1_inp_ptr,
const T* gelu_inp_ptr,
const T* ff2_inp_ptr,
const T* input_mask_ptr,
const T* attn_qkvw_ptr,
const T* attn_ow_ptr,
const T* attn_nw_ptr,
const T* attn_nb_ptr,
const T* inter_w_ptr,
const T* inter_b_ptr,
const T* output_w_ptr,
const T* norm_w_ptr,
const T* norm_b_ptr,
T* grad_input_ptr,
T* grad_attn_qkvw_ptr,
T* grad_attn_qkvb_ptr,
T* grad_attn_ow_ptr,
T* grad_attn_ob_ptr,
T* grad_attn_nw_ptr,
T* grad_attn_nb_ptr,
T* grad_inter_w_ptr,
T* grad_inter_b_ptr,
T* grad_output_w_ptr,
T* grad_output_b_ptr,
T* grad_norm_w_ptr,
T* grad_norm_b_ptr);
void SetIntermediateBuffers(uint8_t* attn_prob_dropout_mask_ptr,
uint8_t* attn_output_dropout_mask_ptr,
uint8_t* layer_output_dropout_mask_ptr,
T* layer_norm_var,
T* layer_norm_mean,
T* attn_layer_norm_var,
T* attn_layer_norm_mean);
inline int GetBatchSize() const { return _batch_size; }
inline int GetNumHeads() const { return _heads; }
inline int GetSeqLength() const { return _seq_length; }
inline int GetIntermediateSize() const { return _intermediate_size; }
void SetSeqLength(int seq_len);
inline int GetHiddenSize() const { return _hidden_size; }
void SetTrainingMode(bool training);
inline bool IsTrainingMode() const { return _training; }
inline bool GeluCheckpoint() const { return _gelu_checkpoint; }
private:
void Initialize();
size_t getWorkspaceSize(int maxBatchSize) const;
// Params
int _layer_id;
int _batch_size;
int _hidden_size;
int _heads;
int _size_per_head;
int _intermediate_size;
int _seq_length;
bool _pre_or_postLayerNorm;
rocblas_handle _cublasHandle;
hipStream_t _stream;
// layers
FeedForward<T> _qkv_linear;
FeedForward<T> _attn_out_linear;
Normalize_Layer<T> _attn_layer_norm;
Normalize_Layer<T> _layer_norm;
Normalize_Layer<T>* _last_normalize;
FeedForward<T> _ff1, _ff2;
Softmax<T> _softmax;
Gelu<T> _gelu;
Dropout<T> _attn_prob_dropout;
Dropout<T> _attn_output_dropout;
Dropout<T> _layer_output_dropout;
StridedBatchGemm<T> _attn_scores;
StridedBatchGemm<T> _attn_context;
bool _training;
// Memory saving flags
bool _attn_dropout_checkpoint;
bool _normalize_invertible;
bool _gelu_checkpoint;
// High Performace flags
bool _stochastic_mode;
};
#ifndef __FEEDFORWARD_H__
#define __FEEDFORWARD_H__
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include "hip/custom_hip_layers.h"
template <typename T>
class FeedForward {
public:
struct Config {
int batchSize, outputSize;
int inputSize;
std::array<int, 3> gemm_algos;
Config(int batch, int outputs, int inputs, const std::array<int, 3>& algos)
: batchSize(batch), outputSize(outputs), inputSize(inputs), gemm_algos(algos)
{
}
};
FeedForward(Config config) : config_(config) {}
~FeedForward() {}
void Forward(int bsz,
const T* input_ptr,
const T* weights,
T* out,
rocblas_handle& _cublasHandle)
{
float alpha = T(1.);
float beta = T(0.);
cublas_gemm_ex(_cublasHandle,
rocblas_operation_transpose,
rocblas_operation_none,
config_.outputSize,
bsz,
config_.inputSize,
&alpha,
&beta,
weights,
input_ptr,
out,
//cublasGemmAlgo_t(config_.gemm_algos[0]));
rocblas_gemm_algo(config_.gemm_algos[0]));
}
void Backward(int bsz,
const T* out_grad,
const T* input_ptr,
const T* weights,
T* weights_grad,
T* bias_grad,
rocblas_handle& _cublasHandle,
hipStream_t& stream,
T* inp_grad_out = nullptr,
T* out_grad_trans_out = nullptr)
{
float alpha = (T)1.0, beta = (T)0.0;
cublas_gemm_ex(_cublasHandle,
rocblas_operation_none,
rocblas_operation_transpose,
config_.inputSize,
config_.outputSize,
bsz,
&alpha,
&beta,
input_ptr,
out_grad,
weights_grad,
//cublasGemmAlgo_t(config_.gemm_algos[1]));
rocblas_gemm_algo(config_.gemm_algos[1]));
cublas_gemm_ex(_cublasHandle,
rocblas_operation_none,
rocblas_operation_none,
config_.inputSize,
bsz,
config_.outputSize,
&alpha,
&beta,
weights,
out_grad,
inp_grad_out,
//cublasGemmAlgo_t(config_.gemm_algos[2]));
rocblas_gemm_algo(config_.gemm_algos[2]));
launch_fuse_transpose_bias_kernel<T>(out_grad, bias_grad, bsz, config_.outputSize, stream);
}
private:
Config config_;
};
#endif
#pragma once
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include "hip/custom_hip_layers.h"
template <typename T>
class Gelu {
public:
struct Config {
uint32_t intermediate_size;
Config(uint32_t inter_size) : intermediate_size(inter_size) {}
};
Gelu(const Config& config) : _config(config) {}
virtual ~Gelu() {}
void ForwardWithBiasAdd(int bsz,
const T* input_buf,
const T* bias,
T* output,
hipStream_t stream)
{
launch_bias_gelu<T>(input_buf, bias, output, _config.intermediate_size, bsz, stream);
}
void Backward(int bsz, T* d_output, const T* input_buf, const T* bias, hipStream_t stream)
{
launch_d_gelu<T>(d_output, input_buf, bias, _config.intermediate_size, bsz, stream);
}
private:
Config _config;
};
#pragma once
#include <hip/hip_fp16.h>
#ifndef __HIP_PLATFORM_HCC__
#include <cuda_profiler_api.h>
#endif
#include <array>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <memory>
#include "StopWatch.h"
#include "cublas_wrappers.h"
template <typename T>
void check(T result, char const* const func, const char* const file, int const line)
{
if (result) {
std::cout << (std::string("CUDA runtime error: ") + +file + ":" + std::to_string(line) +
" \n");
}
}
#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)
template <typename T>
class GemmTest {
public:
GemmTest(int m, int n, int k, rocblas_operation ta, rocblas_operation tb, rocblas_handle h)
: M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
{
check_cuda_error(hipMalloc((void**)&A, sizeof(T) * M * K));
check_cuda_error(hipMalloc((void**)&B, sizeof(T) * K * N));
check_cuda_error(hipMalloc((void**)&C, sizeof(T) * M * N));
}
~GemmTest()
{
check_cuda_error(hipFree(A));
check_cuda_error(hipFree(B));
check_cuda_error(hipFree(C));
}
std::array<int, 3> TestAlgo(int loops)
{
float alpha = (T)1.0f;
float beta = (T)0.0f;
int algo_fw = Run(loops, [=](int algo) {
cublas_gemm_ex(handle,
rocblas_operation_transpose,
rocblas_operation_none,
N,
M,
K,
&alpha,
&beta,
B,
A,
C,
#ifdef __HIP_PLATFORM_HCC__
static_cast<rocblas_gemm_algo>(algo));
#else
static_cast<cublasGemmAlgo_t>(algo));
#endif
});
int algo_bw1 = Run(loops, [=](int algo) {
cublas_gemm_ex(handle,
rocblas_operation_none,
rocblas_operation_transpose,
K,
N,
M,
&alpha,
&beta,
A,
C,
B,
#ifdef __HIP_PLATFORM_HCC__
static_cast<rocblas_gemm_algo>(algo));
#else
static_cast<cublasGemmAlgo_t>(algo));
#endif
});
int algo_bw2 = Run(loops, [=](int algo) {
cublas_gemm_ex(handle,
rocblas_operation_none,
rocblas_operation_none,
K,
M,
N,
&alpha,
&beta,
B,
C,
A,
#ifdef __HIP_PLATFORM_HCC__
static_cast<rocblas_gemm_algo>(algo));
#else
static_cast<cublasGemmAlgo_t>(algo));
#endif
});
return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
}
template <typename Func>
int Run(int loops, Func f)
{
//float fast_latency = std::numeric_limits<float>::max();
float fast_latency = (std::numeric_limits<float>::max)();
int fast_algo = 0;
#ifdef __HIP_PLATFORM_HCC__
for (int algo = (int)rocblas_gemm_algo_standard;
algo <= (int)rocblas_gemm_algo_standard;
#else
for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
#endif
algo++) {
int warm_up = 5;
for (int i = 0; i < warm_up; ++i) f(algo);
hipDeviceSynchronize();
Stopwatch timer;
timer.Restart();
for (int i = 0; i < loops; ++i) f(algo);
hipDeviceSynchronize();
timer.Stop();
float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;
printf("algo-%d: %.3fms\n", algo, avg_latency);
if (avg_latency < fast_latency) {
fast_latency = avg_latency;
fast_algo = algo;
}
}
printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);
return fast_algo;
}
private:
int M, N, K;
rocblas_handle handle;
rocblas_operation transa, transb;
T *A, *B, *C;
};
template <typename T>
class StridedGemmTest {
public:
StridedGemmTest(int b,
int m,
int n,
int k,
rocblas_operation ta,
rocblas_operation tb,
rocblas_handle h)
: bsz(b), M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
{
check_cuda_error(hipMalloc((void**)&A, sizeof(T) * M * K * bsz));
check_cuda_error(hipMalloc((void**)&B, sizeof(T) * K * N * bsz));
check_cuda_error(hipMalloc((void**)&C, sizeof(T) * M * N * bsz));
}
~StridedGemmTest()
{
check_cuda_error(hipFree(A));
check_cuda_error(hipFree(B));
check_cuda_error(hipFree(C));
}
std::array<int, 3> TestAlgo(int loops)
{
float alpha = (T)1.0f;
float beta = (T)0.0f;
int algo_fw = Run(loops, [=](int algo) {
int stride_a = M * K;
int stride_b = N * K;
int stride_c = M * N;
cublas_strided_batched_gemm(handle,
M,
N,
K,
&alpha,
&beta,
A,
B,
C,
transa,
transb,
stride_a,
stride_b,
stride_c,
bsz,
#ifdef __HIP_PLATFORM_HCC__
static_cast<rocblas_gemm_algo>(algo));
#else
static_cast<cublasGemmAlgo_t>(algo));
#endif
});
int algo_bw1 = Run(loops, [=](int algo) {
int mb = (transa == rocblas_operation_transpose ? K : M);
int kb = (transa == rocblas_operation_transpose ? M : K);
int stride_a = mb * N;
int stride_b = N * kb;
int stride_c = M * K;
// B need to transpose.
rocblas_operation op_b = (transb == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
// Calculate d_A.
cublas_strided_batched_gemm(handle,
mb,
kb,
N,
&alpha,
&beta,
(transa == rocblas_operation_transpose ? B : C),
(transa == rocblas_operation_transpose ? C : B),
A,
rocblas_operation_none,
op_b,
stride_a,
stride_b,
stride_c,
bsz,
#ifdef __HIP_PLATFORM_HCC__
static_cast<rocblas_gemm_algo>(algo));
#else
static_cast<cublasGemmAlgo_t>(algo));
#endif
});
int algo_bw2 = Run(loops, [=](int algo) {
// A need to transpose.
rocblas_operation op_a = (transa == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
int stride_a = M * K;
int stride_b = M * N;
int stride_c = N * K;
// Calculate d_B.
cublas_strided_batched_gemm(handle,
K,
N,
M,
&alpha,
&beta,
A,
C,
B,
op_a,
rocblas_operation_none,
stride_a,
stride_b,
stride_c,
bsz,
#ifdef __HIP_PLATFORM_HCC__
static_cast<rocblas_gemm_algo>(algo));
#else
static_cast<cublasGemmAlgo_t>(algo));
#endif
});
return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
}
template <typename Func>
int Run(int loops, Func f)
{
//float fast_latency = std::numeric_limits<float>::max();
float fast_latency = (std::numeric_limits<float>::max)();
int fast_algo = 0;
#ifdef __HIP_PLATFORM_HCC__
for (int algo = (int)rocblas_gemm_algo_standard;
algo <= (int)rocblas_gemm_algo_standard;
#else
for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
#endif
algo++) {
int warm_up = 5;
for (int i = 0; i < warm_up; ++i) f(algo);
hipDeviceSynchronize();
Stopwatch timer;
timer.Restart();
for (int i = 0; i < loops; ++i) f(algo);
hipDeviceSynchronize();
timer.Stop();
float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;
printf("algo-%d: %.3fms\n", algo, avg_latency);
if (avg_latency < fast_latency) {
fast_latency = avg_latency;
fast_algo = algo;
}
}
printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);
return fast_algo;
}
private:
int bsz, M, N, K;
rocblas_handle handle;
rocblas_operation transa, transb;
T *A, *B, *C;
};
#pragma once
#include <hip/hip_fp16.h>
#ifndef __HIP_PLATFORM_HCC__
#include <cuda_profiler_api.h>
#endif
#include <array>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <memory>
#include "StopWatch.h"
#include "hip/cublas_wrappers.h"
template <typename T>
void check(T result, char const* const func, const char* const file, int const line)
{
if (result) {
std::cout << (std::string("CUDA runtime error: ") + +file + ":" + std::to_string(line) +
" \n");
}
}
#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)
template <typename T>
class GemmTest {
public:
GemmTest(int m, int n, int k, rocblas_operation ta, rocblas_operation tb, rocblas_handle h)
: M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
{
check_cuda_error(hipMalloc((void**)&A, sizeof(T) * M * K));
check_cuda_error(hipMalloc((void**)&B, sizeof(T) * K * N));
check_cuda_error(hipMalloc((void**)&C, sizeof(T) * M * N));
}
~GemmTest()
{
check_cuda_error(hipFree(A));
check_cuda_error(hipFree(B));
check_cuda_error(hipFree(C));
}
std::array<int, 3> TestAlgo(int loops)
{
float alpha = (T)1.0f;
float beta = (T)0.0f;
int algo_fw = Run(loops, [=](int algo) {
cublas_gemm_ex(handle,
rocblas_operation_transpose,
rocblas_operation_none,
N,
M,
K,
&alpha,
&beta,
B,
A,
C,
static_cast<cublasGemmAlgo_t>(algo));
});
int algo_bw1 = Run(loops, [=](int algo) {
cublas_gemm_ex(handle,
rocblas_operation_none,
rocblas_operation_transpose,
K,
N,
M,
&alpha,
&beta,
A,
C,
B,
static_cast<cublasGemmAlgo_t>(algo));
});
int algo_bw2 = Run(loops, [=](int algo) {
cublas_gemm_ex(handle,
rocblas_operation_none,
rocblas_operation_none,
K,
M,
N,
&alpha,
&beta,
B,
C,
A,
static_cast<cublasGemmAlgo_t>(algo));
});
return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
}
template <typename Func>
int Run(int loops, Func f)
{
float fast_latency = (std::numeric_limits<float>::max)();
int fast_algo = 0;
for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
algo++) {
int warm_up = 5;
for (int i = 0; i < warm_up; ++i) f(algo);
hipDeviceSynchronize();
Stopwatch timer;
timer.Restart();
for (int i = 0; i < loops; ++i) f(algo);
hipDeviceSynchronize();
timer.Stop();
float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;
printf("algo-%d: %.3fms\n", algo, avg_latency);
if (avg_latency < fast_latency) {
fast_latency = avg_latency;
fast_algo = algo;
}
}
printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);
return fast_algo;
}
private:
int M, N, K;
rocblas_handle handle;
rocblas_operation transa, transb;
T *A, *B, *C;
};
template <typename T>
class StridedGemmTest {
public:
StridedGemmTest(int b,
int m,
int n,
int k,
rocblas_operation ta,
rocblas_operation tb,
rocblas_handle h)
: bsz(b), M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
{
check_cuda_error(hipMalloc((void**)&A, sizeof(T) * M * K * bsz));
check_cuda_error(hipMalloc((void**)&B, sizeof(T) * K * N * bsz));
check_cuda_error(hipMalloc((void**)&C, sizeof(T) * M * N * bsz));
}
~StridedGemmTest()
{
check_cuda_error(hipFree(A));
check_cuda_error(hipFree(B));
check_cuda_error(hipFree(C));
}
std::array<int, 3> TestAlgo(int loops)
{
float alpha = (T)1.0f;
float beta = (T)0.0f;
int algo_fw = Run(loops, [=](int algo) {
int stride_a = M * K;
int stride_b = N * K;
int stride_c = M * N;
cublas_strided_batched_gemm(handle,
M,
N,
K,
&alpha,
&beta,
A,
B,
C,
transa,
transb,
stride_a,
stride_b,
stride_c,
bsz,
static_cast<cublasGemmAlgo_t>(algo));
});
int algo_bw1 = Run(loops, [=](int algo) {
int mb = (transa == rocblas_operation_transpose ? K : M);
int kb = (transa == rocblas_operation_transpose ? M : K);
int stride_a = mb * N;
int stride_b = N * kb;
int stride_c = M * K;
// B need to transpose.
rocblas_operation op_b = (transb == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
// Calculate d_A.
cublas_strided_batched_gemm(handle,
mb,
kb,
N,
&alpha,
&beta,
(transa == rocblas_operation_transpose ? B : C),
(transa == rocblas_operation_transpose ? C : B),
A,
rocblas_operation_none,
op_b,
stride_a,
stride_b,
stride_c,
bsz,
static_cast<cublasGemmAlgo_t>(algo));
});
int algo_bw2 = Run(loops, [=](int algo) {
// A need to transpose.
rocblas_operation op_a = (transa == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
int stride_a = M * K;
int stride_b = M * N;
int stride_c = N * K;
// Calculate d_B.
cublas_strided_batched_gemm(handle,
K,
N,
M,
&alpha,
&beta,
A,
C,
B,
op_a,
rocblas_operation_none,
stride_a,
stride_b,
stride_c,
bsz,
static_cast<cublasGemmAlgo_t>(algo));
});
return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
}
template <typename Func>
int Run(int loops, Func f)
{
float fast_latency = (std::numeric_limits<float>::max)();
int fast_algo = 0;
for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
algo++) {
int warm_up = 5;
for (int i = 0; i < warm_up; ++i) f(algo);
hipDeviceSynchronize();
Stopwatch timer;
timer.Restart();
for (int i = 0; i < loops; ++i) f(algo);
hipDeviceSynchronize();
timer.Stop();
float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;
printf("algo-%d: %.3fms\n", algo, avg_latency);
if (avg_latency < fast_latency) {
fast_latency = avg_latency;
fast_algo = algo;
}
}
printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);
return fast_algo;
}
private:
int bsz, M, N, K;
rocblas_handle handle;
rocblas_operation transa, transb;
T *A, *B, *C;
};
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include <stdlib.h>
#include <hip/hip_cooperative_groups.h>
#include <hiprand_kernel.h>
#include "hip/context.h"
#include "hip/cublas_wrappers.h"
#define THREADS 256
#define TILE_DIM 32
#define minus_infinity -1 * std::numeric_limits<float>::infinity()
#define FINAL_MASK 0xffffffff
template <typename T>
void launch_fused_add2(T* out,
const T* inp1,
const T* inp2,
int batch_size,
int seq_length,
int hidden_size,
hipStream_t& stream);
template <typename T>
void launch_fused_add4(T* out,
const T* inp1,
const T* inp2,
const T* inp3,
const T* inp4,
int batch_size,
int seq_length,
int hidden_size,
hipStream_t& stream);
template <typename T>
void launch_fused_add3(T* out,
const T* inp1,
const T* inp2,
const T* inp3,
int batch_size,
int seq_length,
int hidden_size,
hipStream_t& stream);
#pragma once
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include <fstream>
#include "hip/custom_hip_layers.h"
using namespace std;
template <typename T>
class Normalize_Layer {
public:
struct Config {
uint32_t batchSize;
uint32_t seqLength;
uint32_t hiddenDim;
float epsilon;
bool training;
bool useMean;
Config(uint32_t batch,
uint32_t seq,
uint32_t h,
float epsilon = 1e-12,
bool training = true,
bool useMean = true)
: batchSize(batch),
seqLength(seq),
hiddenDim(h),
epsilon(epsilon),
training(training),
useMean(useMean)
{
}
};
Normalize_Layer(Config config)
: config_(config), vars(nullptr), means(nullptr), vals_hat(nullptr)
{
}
~Normalize_Layer() {}
void ForwardCheckpoint(int bsz, // batch * seq
T* vals,
const T* residual,
const T* gamma,
const T* betta,
hipStream_t& stream,
bool preLayerNorm = false)
{
launch_bias_residual_layer_norm(vals,
residual,
gamma,
betta,
config_.epsilon,
bsz,
config_.hiddenDim,
stream,
preLayerNorm,
config_.training,
vars,
means);
}
void Forward(int bsz,
T* vals,
const T* residual,
const T* gamma,
const T* betta,
hipStream_t& stream,
bool preLayerNorm = false)
{
launch_bias_residual_layer_norm(vals,
residual,
gamma,
betta,
config_.epsilon,
bsz,
config_.hiddenDim,
stream,
preLayerNorm,
config_.training,
vars);
}
void Backward(int bsz,
const T* out_grad,
const T* gamma,
T* gamma_grad,
T* betta_grad,
hipStream_t stream[2],
T* inp_grad_out,
const T* norm_in = nullptr)
{
launch_layerNorm_backward(out_grad,
norm_in,
vars,
means,
gamma,
gamma_grad,
betta_grad,
inp_grad_out,
bsz,
config_.hiddenDim,
stream);
}
void Backward(int bsz,
const T* out_grad,
const T* gamma,
const T* betta,
T* gamma_grad,
T* betta_grad,
hipStream_t stream[2],
T* inp_grad_out,
const T* norm_out)
{
launch_layerNorm_backward(out_grad,
norm_out,
vars,
gamma,
gamma_grad,
betta_grad,
inp_grad_out,
bsz,
config_.hiddenDim,
stream,
!config_.useMean,
betta);
}
void BackwardFusedAdd(int bsz,
const T* out_grad1,
const T* out_grad2,
const T* gamma,
T* gamma_grad,
T* betta_grad,
hipStream_t stream[2],
T* inp_grad_out,
const T* norm_in = nullptr)
{
launch_layerNorm_backward_fused_add(out_grad1,
out_grad2,
norm_in,
vars,
means,
gamma,
gamma_grad,
betta_grad,
inp_grad_out,
bsz,
config_.hiddenDim,
stream);
}
void BackwardFusedAdd(int bsz,
const T* out_grad1,
const T* out_grad2,
const T* gamma,
const T* betta,
T* gamma_grad,
T* betta_grad,
hipStream_t stream[2],
T* inp_grad_out,
const T* norm_out)
{
launch_layerNorm_backward_fused_add(out_grad1,
out_grad2,
norm_out,
vars,
gamma,
gamma_grad,
betta_grad,
inp_grad_out,
bsz,
config_.hiddenDim,
stream,
!config_.useMean,
betta);
}
inline bool UseMean() const { return config_.useMean; }
inline void SetVar(T* variance)
{
if (!variance) { throw std::runtime_error("Normalize variance is null."); }
vars = variance;
}
inline void SetMean(T* mean)
{
if (!mean) { throw std::runtime_error("Normalize mean is null."); }
means = mean;
}
private:
Config config_;
T* vars;
T* means;
T* vals_hat;
};
#pragma once
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include "hip/custom_hip_layers.h"
#include <fstream>
using namespace std;
template <typename T>
class Softmax {
public:
struct Config {
size_t batchSize;
size_t heads;
size_t seq_length;
size_t prob_depth;
float temprature;
bool mem_alloc;
Config(size_t batch, size_t h, size_t seq, int prob_size = 0, bool mem_alloc = false)
: batchSize(batch),
heads(h),
seq_length(seq),
prob_depth(prob_size),
temprature(1.0),
mem_alloc(mem_alloc)
{
}
};
Softmax(Config config) : config_(config) {}
~Softmax() {}
void Forward(int bsz, T* vals, const T* attn_mask, hipStream_t& stream)
{
launch_attn_softmax<T>(vals, attn_mask, bsz, config_.heads, config_.seq_length, stream);
}
void Backward(int bsz, T* out_grad, const T* soft_out, hipStream_t stream)
{
launch_attn_softmax_backward_v2<T>(
out_grad, soft_out, bsz, config_.heads, config_.seq_length, stream);
}
inline size_t GetProbDepth() const { return config_.prob_depth; }
inline size_t GetBatchSize() const { return config_.batchSize; }
inline size_t GetNumHeads() const { return config_.heads; }
inline size_t GetSeqLength() const { return config_.seq_length; }
inline void SetSeqLength(size_t seq_len) { config_.seq_length = seq_len; }
private:
Config config_;
};
#pragma once
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include "hip/context.h"
template <typename T>
class StridedBatchGemm {
public:
struct Config {
int batch_size;
int m;
int n;
int k;
float alpha;
float beta;
rocblas_operation op_A;
rocblas_operation op_B;
std::array<int, 3> gemm_algos;
Config(int batch,
int mm,
int nn,
int kk,
float param_alpha,
float param_beta,
rocblas_operation opA,
rocblas_operation opB,
const std::array<int, 3>& algos)
: batch_size(batch),
m(mm),
n(nn),
k(kk),
alpha(param_alpha),
beta(param_beta),
op_A(opA),
op_B(opB),
gemm_algos(algos)
{
}
void SetConfig(int mm, int nn, int kk)
{
m = mm;
n = nn;
k = kk;
}
};
StridedBatchGemm(const Config& config) : _config(config) {}
virtual ~StridedBatchGemm() {}
void Forward(int bsz, T* output, const T* _buffer_a, const T* _buffer_b, rocblas_handle handle)
{
int stride_a = _config.m * _config.k;
int stride_b = _config.n * _config.k;
int stride_c = _config.m * _config.n;
cublas_strided_batched_gemm(handle,
//rocblas_sgemm_strided_batched(handle,
_config.m,
_config.n,
_config.k,
&_config.alpha,
&_config.beta,
_buffer_a,
_buffer_b,
output,
_config.op_A,
_config.op_B,
stride_a,
stride_b,
stride_c,
bsz,
rocblas_gemm_algo(_config.gemm_algos[0]));
//rocblas_sgemm_strided_batched(handle,
}
void ForwardPlusSave(T* output, const T* _buffer_a, const T* _buffer_b, rocblas_handle handle)
{
int stride_a = _config.m * _config.k;
int stride_b = _config.n * _config.k;
int stride_c = _config.m * _config.n;
cublas_strided_batched_gemm(handle,
_config.m,
_config.n,
_config.k,
&_config.alpha,
&_config.beta,
_buffer_a,
_buffer_b,
output,
_config.op_A,
_config.op_B,
stride_a,
stride_b,
stride_c,
_config.batch_size,
//cublasGemmAlgo_t(_config.gemm_algos[0]));
rocblas_gemm_algo(_config.gemm_algos[0]));
k_buf = _buffer_a;
q_buf = _buffer_b;
}
void Backward(int bsz,
const T* d_output,
const T* _buffer_a,
const T* _buffer_b,
rocblas_handle handle,
T* inpGradA = nullptr,
T* inpGradB = nullptr)
{
int mb = (_config.op_A == rocblas_operation_transpose ? _config.k : _config.m);
int kb = (_config.op_A == rocblas_operation_transpose ? _config.m : _config.k);
int stride_a = mb * _config.n;
int stride_b = _config.n * kb;
int stride_c = _config.m * _config.k;
// B need to transpose.
rocblas_operation op_b = (_config.op_B == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
// Calculate d_A.
cublas_strided_batched_gemm(handle,
//rocblas_sgemm_strided_batched(handle,
mb,
kb,
_config.n,
&_config.alpha,
&_config.beta,
(_config.op_A == rocblas_operation_transpose ? _buffer_b : d_output),
(_config.op_A == rocblas_operation_transpose ? d_output : _buffer_b),
inpGradA,
rocblas_operation_none,
op_b,
stride_a,
stride_b,
stride_c,
bsz,
//cublasGemmAlgo_t(_config.gemm_algos[1]));
rocblas_gemm_algo(_config.gemm_algos[1]));
// A need to transpose.
rocblas_operation op_a = (_config.op_A == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
stride_a = _config.m * _config.k;
stride_b = _config.m * _config.n;
stride_c = _config.n * _config.k;
// Calculate d_B.
cublas_strided_batched_gemm(handle,
//rocblas_sgemm_strided_batched(handle,
_config.k,
_config.n,
_config.m,
&_config.alpha,
&_config.beta,
_buffer_a,
d_output,
inpGradB,
op_a,
rocblas_operation_none,
stride_a,
stride_b,
stride_c,
bsz,
//cublasGemmAlgo_t(_config.gemm_algos[2]));
rocblas_gemm_algo(_config.gemm_algos[2]));
}
inline int GetN() const { return _config.k; }
inline const T* GetBufferA() const { return k_buf; }
inline const T* GetBufferB() const { return q_buf; }
inline void SetConfig(int m, int n, int k) { _config.SetConfig(m, n, k); }
private:
Config _config;
const T* q_buf;
const T* k_buf;
};
#pragma once
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <stdio.h>
#include "hip/context.h"
template <typename T>
class StridedBatchGemm {
public:
struct Config {
int batch_size;
int m;
int n;
int k;
float alpha;
float beta;
rocblas_operation op_A;
rocblas_operation op_B;
std::array<int, 3> gemm_algos;
Config(int batch,
int mm,
int nn,
int kk,
float param_alpha,
float param_beta,
rocblas_operation opA,
rocblas_operation opB,
const std::array<int, 3>& algos)
: batch_size(batch),
m(mm),
n(nn),
k(kk),
alpha(param_alpha),
beta(param_beta),
op_A(opA),
op_B(opB),
gemm_algos(algos)
{
}
void SetConfig(int mm, int nn, int kk)
{
m = mm;
n = nn;
k = kk;
}
};
StridedBatchGemm(const Config& config) : _config(config) {}
virtual ~StridedBatchGemm() {}
void Forward(int bsz, T* output, const T* _buffer_a, const T* _buffer_b, rocblas_handle handle)
{
int stride_a = _config.m * _config.k;
int stride_b = _config.n * _config.k;
int stride_c = _config.m * _config.n;
cublas_strided_batched_gemm(handle,
_config.m,
_config.n,
_config.k,
&_config.alpha,
&_config.beta,
_buffer_a,
_buffer_b,
output,
_config.op_A,
_config.op_B,
stride_a,
stride_b,
stride_c,
bsz,
cublasGemmAlgo_t(_config.gemm_algos[0]));
}
void ForwardPlusSave(T* output, const T* _buffer_a, const T* _buffer_b, rocblas_handle handle)
{
int stride_a = _config.m * _config.k;
int stride_b = _config.n * _config.k;
int stride_c = _config.m * _config.n;
cublas_strided_batched_gemm(handle,
_config.m,
_config.n,
_config.k,
&_config.alpha,
&_config.beta,
_buffer_a,
_buffer_b,
output,
_config.op_A,
_config.op_B,
stride_a,
stride_b,
stride_c,
_config.batch_size,
cublasGemmAlgo_t(_config.gemm_algos[0]));
k_buf = _buffer_a;
q_buf = _buffer_b;
}
void Backward(int bsz,
const T* d_output,
const T* _buffer_a,
const T* _buffer_b,
rocblas_handle handle,
T* inpGradA = nullptr,
T* inpGradB = nullptr)
{
int mb = (_config.op_A == rocblas_operation_transpose ? _config.k : _config.m);
int kb = (_config.op_A == rocblas_operation_transpose ? _config.m : _config.k);
int stride_a = mb * _config.n;
int stride_b = _config.n * kb;
int stride_c = _config.m * _config.k;
// B need to transpose.
rocblas_operation op_b = (_config.op_B == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
// Calculate d_A.
cublas_strided_batched_gemm(handle,
mb,
kb,
_config.n,
&_config.alpha,
&_config.beta,
(_config.op_A == rocblas_operation_transpose ? _buffer_b : d_output),
(_config.op_A == rocblas_operation_transpose ? d_output : _buffer_b),
inpGradA,
rocblas_operation_none,
op_b,
stride_a,
stride_b,
stride_c,
bsz,
cublasGemmAlgo_t(_config.gemm_algos[1]));
// A need to transpose.
rocblas_operation op_a = (_config.op_A == rocblas_operation_transpose ? rocblas_operation_none : rocblas_operation_transpose);
stride_a = _config.m * _config.k;
stride_b = _config.m * _config.n;
stride_c = _config.n * _config.k;
// Calculate d_B.
cublas_strided_batched_gemm(handle,
_config.k,
_config.n,
_config.m,
&_config.alpha,
&_config.beta,
_buffer_a,
d_output,
inpGradB,
op_a,
rocblas_operation_none,
stride_a,
stride_b,
stride_c,
bsz,
cublasGemmAlgo_t(_config.gemm_algos[2]));
}
inline int GetN() const { return _config.k; }
inline const T* GetBufferA() const { return k_buf; }
inline const T* GetBufferB() const { return q_buf; }
inline void SetConfig(int m, int n, int k) { _config.SetConfig(m, n, k); }
private:
Config _config;
const T* q_buf;
const T* k_buf;
};
#include "hip/hip_runtime.h"
/* Taken from NVIDIA/apex commit 855808f3fc268e9715d613f3c2e56469d8c986d8 */
#include <ATen/ATen.h>
// Forward/backward compatiblity hack around
// https://github.com/pytorch/pytorch/commit/3aeb78079bcd68282fe9117088e138b77318e288
// pending more future-proof guidance from upstream.
// struct TypeShim
// {
// const at::Type& payload;
// TypeShim(const at::Type& type) : payload(type) {}
// // Enable trivial conversion to a const at::Type& for pre-3aeb78
// operator const at::Type&(){ return payload; };
// // Enable dispatch switch statements to take *this directly for post-3aeb78
// //operator at::ScalarType(){ return payload.; };
// };
#define DISPATCH_FLOAT_AND_HALF(TYPE, LEVEL, NAME, ...) \
switch (TYPE) { \
case at::ScalarType::Float: { \
using scalar_t_##LEVEL = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: { \
using scalar_t_##LEVEL = at::Half; \
__VA_ARGS__; \
break; \
} \
default: AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_DOUBLE_FLOAT_AND_HALF(TYPE, LEVEL, NAME, ...) \
switch (TYPE) { \
case at::ScalarType::Double: { \
using scalar_t_##LEVEL = double; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Float: { \
using scalar_t_##LEVEL = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: { \
using scalar_t_##LEVEL = at::Half; \
__VA_ARGS__; \
break; \
} \
default: AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_DOUBLE_AND_FLOAT(TYPE, LEVEL, NAME, ...) \
switch (TYPE) { \
case at::ScalarType::Double: { \
using scalar_t_##LEVEL = double; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Float: { \
using scalar_t_##LEVEL = float; \
__VA_ARGS__; \
break; \
} \
default: AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
template <typename T>
__device__ __forceinline__ T
reduce_block_into_lanes(T* x,
T val,
int lanes = 1,
bool share_result = false) // lanes is intended to be <= 32.
{
int tid = threadIdx.x + threadIdx.y * blockDim.x;
int blockSize = blockDim.x * blockDim.y; // blockSize is intended to be a multiple of 32.
if (blockSize >= 64) {
x[tid] = val;
__syncthreads();
}
#pragma unroll
for (int i = (blockSize >> 1); i >= 64; i >>= 1) {
if (tid < i) x[tid] = x[tid] + x[tid + i];
__syncthreads();
}
T final;
if (tid < 32) {
if (blockSize >= 64)
final = x[tid] + x[tid + 32];
else
final = val;
// __SYNCWARP();
#pragma unroll
for (int i = 16; i >= lanes; i >>= 1)
final = final + __shfl_down_sync(0xffffffff, final, i);
}
if (share_result) {
if (tid < lanes) x[tid] = final; // EpilogueOp
// Make sure the smem result is visible to all warps.
__syncthreads();
}
return final;
}
/* Copyright 2019 The Microsoft DeepSpeed Team */
#include <torch/extension.h>
// CUDA forward declaration
void fused_lamb_cuda(at::Tensor& p,
at::Tensor& p_copy,
at::Tensor& m,
at::Tensor& v,
at::Tensor& g,
float lr,
float beta1,
float beta2,
float max_coeff,
float min_coeff,
float eps,
float grad_scale,
int step,
int mode,
int bias_correction,
float decay,
at::Tensor& w_l2_i,
at::Tensor& u_l2_i,
at::Tensor& lamb_coeff_val);
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
// C++ interface
at::Tensor lamb(at::Tensor& p,
at::Tensor& p_copy,
at::Tensor& m,
at::Tensor& v,
at::Tensor& g,
float lr,
float beta1,
float beta2,
float max_coeff,
float min_coeff,
float eps,
float grad_scale,
int step,
int mode,
int bias_correction,
float decay)
{
CHECK_INPUT(p);
if (p_copy.numel() > 0) CHECK_INPUT(p_copy);
CHECK_INPUT(m);
CHECK_INPUT(v);
CHECK_INPUT(g);
int64_t num_elem = p.numel();
AT_ASSERTM(m.numel() == num_elem, "number of elements in m and p tensors should be equal");
AT_ASSERTM(v.numel() == num_elem, "number of elements in v and p tensors should be equal");
AT_ASSERTM(g.numel() == num_elem, "number of elements in g and p tensors should be equal");
AT_ASSERTM(
p_copy.numel() == num_elem || p_copy.numel() == 0,
"number of elements in p_copy and p tensors should be equal, or p_copy should be empty");
// intermediate for weight L2 reduction
// make sure that the threads per block is at least 512 during the kernel launch otherwise the
// behavious is unexpected
at::Tensor w_l2_i = at::empty(
{512},
p.options().dtype(p.type().scalarType() == at::ScalarType::Half ? at::ScalarType::Float
: p.type().scalarType()));
// intermediate for update L2 reduction
// make sure that the threads per block is at least 512 during the kernel launch otherwise the
// behavious is unexpected
at::Tensor u_l2_i = at::empty(
{512},
p.options().dtype(p.type().scalarType() == at::ScalarType::Half ? at::ScalarType::Float
: p.type().scalarType()));
at::Tensor lamb_coeff_val = at::empty(
{1},
p.options().dtype(p.type().scalarType() == at::ScalarType::Half ? at::ScalarType::Float
: p.type().scalarType()));
fused_lamb_cuda(p,
p_copy,
m,
v,
g,
lr,
beta1,
beta2,
max_coeff,
min_coeff,
eps,
grad_scale,
step,
mode,
bias_correction,
decay,
w_l2_i,
u_l2_i,
lamb_coeff_val);
return lamb_coeff_val;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("lamb", &lamb, "Adam optimized CUDA implementation with LAMB.");
}
/* Copyright 2019 The Microsoft DeepSpeed Team */
#include <hip/hip_runtime.h>
#include <hip/hip_runtime.h>
#include <stdio.h>
#include <cmath>
#include "ATen/ATen.h"
#include "ATen/TensorUtils.h"
#include "ATen/hip/HIPContext.h"
#include "ATen/hip/detail/IndexUtils.cuh"
//#include "ATen/Type.h"
#include <THH/THHGeneral.h>
#include "ATen/AccumulateType.h"
#include <iostream>
//#include <helper_functions.h>
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
#include <hip/hip_cooperative_groups.h>
#else
#include <cooperative_groups.h>
#endif
#include <hip/hip_runtime_api.h>
#include <stdio.h>
namespace cg = cooperative_groups;
// Utility class used to avoid linker errors with extern
// unsized shared memory arrays with templated type
namespace {
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
template <typename T>
struct SharedMemory {
// Ensure that we won't compile any un-specialized types
__device__ inline operator T*()
{
extern __device__ void error(void);
error();
return NULL;
}
};
template <>
struct SharedMemory<float> {
__device__ inline operator float*()
{
HIP_DYNAMIC_SHARED( float, s_float)
return s_float;
}
};
template <>
struct SharedMemory<double> {
__device__ inline operator double*()
{
HIP_DYNAMIC_SHARED( double, s_double)
return s_double;
}
};
} // namespace
#include "hip/type_shim.h"
//#include "type_shim.h"
typedef enum {
ADAM_MODE_0 = 0, // eps under square root
ADAM_MODE_1 = 1 // eps outside square root
} adamMode_t;
// s_a and s_b are in shared memory
// g_a and g_b are in shared memory
template <typename T, int blockSize>
__device__ void reduce_block_in_shared_memory(T* s_a, T* s_b, T* g_a, T* g_b)
{
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// perform block reduction in shared memory,
unsigned int tid = cta.thread_rank();
T a_sum = s_a[tid];
T b_sum = s_b[tid];
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
// do reduction in shared mem
if ((blockSize >= 512) && (tid < 256)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 256];
s_b[tid] = b_sum = b_sum + s_b[tid + 256];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 256) && (tid < 128)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 128];
s_b[tid] = b_sum = b_sum + s_b[tid + 128];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 128) && (tid < 64)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 64];
s_b[tid] = b_sum = b_sum + s_b[tid + 64];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
#if (__CUDA_ARCH__ >= 300)
if (tid < 32) {
cg::coalesced_group active = cg::coalesced_threads();
// Fetch final intermediate sum from 2nd warp
if (blockSize >= 64) {
a_sum = a_sum + s_a[tid + 32];
b_sum = b_sum + s_b[tid + 32];
}
// Reduce final warp using shuffle
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
a_sum += active.shfl_down(a_sum, offset);
b_sum += active.shfl_down(b_sum, offset);
}
}
#else
if ((blockSize >= 64) && (tid < 32)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 32];
s_b[tid] = b_sum = b_sum + s_b[tid + 32];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 32) && (tid < 16)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 16];
s_b[tid] = b_sum = b_sum + s_b[tid + 16];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 16) && (tid < 8)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 8];
s_b[tid] = b_sum = b_sum + s_b[tid + 8];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 8) && (tid < 4)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 4];
s_b[tid] = b_sum = b_sum + s_b[tid + 4];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 4) && (tid < 2)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 2];
s_b[tid] = b_sum = b_sum + s_b[tid + 2];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
if ((blockSize >= 2) && (tid < 1)) {
s_a[tid] = a_sum = a_sum + s_a[tid + 1];
s_b[tid] = b_sum = b_sum + s_b[tid + 1];
}
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION > 305
cta.sync();
#else
cg::sync(cta);
#endif
#endif
// write result for this block to global mem
if (tid == 0) {
g_a[blockIdx.x] = (T)a_sum;
g_b[blockIdx.x] = (T)b_sum;
}
}
template <typename T, int blockSize>
__device__ void reduce_two_vectors_in_register(T a, T b, T* g_a, T* g_b)
{
const int threadIdInBlock = cg::this_thread_block().thread_rank();
T* s_a = SharedMemory<T>();
T* s_b = SharedMemory<T>() + cg::this_thread_block().size();
s_a[threadIdInBlock] = a;
s_b[threadIdInBlock] = b;
reduce_block_in_shared_memory<T, blockSize>(s_a, s_b, g_a, g_b);
}
template <typename T, typename GRAD_T, int blockSize>
__global__ void lamb_cuda_kernel_part1(
T* __restrict__ p,
GRAD_T* __restrict__ p_copy, // For mixed precision training, pass NULL if not needed
T* __restrict__ m,
T* __restrict__ v,
const GRAD_T* __restrict__ g,
const float b1,
const float b2,
const float eps,
const float grad_scale,
const float step_size,
const size_t tsize,
adamMode_t mode,
const float decay,
T* __restrict__ w_l2_i,
T* __restrict__ u_l2_i)
{
// Assuming 2D grids and 2D blocks
const int blockId = gridDim.x * blockIdx.y + blockIdx.x;
const int threadsPerBlock = blockDim.x * blockDim.y;
const int threadIdInBlock = cg::this_thread_block().thread_rank();
const int i = (blockId * threadsPerBlock + threadIdInBlock);
const int totThreads = gridDim.x * gridDim.y * threadsPerBlock;
T reg_w = 0;
T reg_u = 0;
for (int j = i; j < tsize; j += totThreads) {
T scaled_grad = g[j] / grad_scale;
T pj = p[j];
m[j] = b1 * m[j] + (1 - b1) * scaled_grad;
v[j] = b2 * v[j] + (1 - b2) * scaled_grad * scaled_grad;
float denom;
if (mode == ADAM_MODE_0)
denom = sqrtf(v[j] + eps);
else // Mode 1
denom = sqrtf(v[j]) + eps;
T update = (m[j] / denom) + (decay * p[j]);
reg_u += update * update;
reg_w += pj * pj;
}
reduce_two_vectors_in_register<T, blockSize>(reg_w, reg_u, w_l2_i, u_l2_i);
}
template <typename T, typename GRAD_T, int blockSize>
__global__ void lamb_cuda_kernel_part2(const size_t tsize, T* __restrict__ g_a, T* __restrict__ g_b)
{
T* s_a = SharedMemory<T>();
T* s_b = SharedMemory<T>() + cg::this_thread_block().size();
const int threadIdInBlock = cg::this_thread_block().thread_rank();
s_a[threadIdInBlock] = g_a[threadIdInBlock];
s_b[threadIdInBlock] = g_b[threadIdInBlock];
if (threadIdInBlock >= tsize) {
s_a[threadIdInBlock] = 0.0;
s_b[threadIdInBlock] = 0.0;
}
reduce_block_in_shared_memory<T, blockSize>(s_a, s_b, g_a, g_b);
}
template <typename T, typename GRAD_T>
__global__ void lamb_cuda_kernel_part3(
T* __restrict__ p,
GRAD_T* __restrict__ p_copy, // For mixed precision training, pass NULL if not needed
T* __restrict__ m,
T* __restrict__ v,
const GRAD_T* __restrict__ g,
const float b1,
const float b2,
const float max_coeff,
const float min_coeff,
const float eps,
const float grad_scale,
const float step_size,
const size_t tsize,
adamMode_t mode,
const float decay,
T* __restrict__ w_l2_i,
T* __restrict__ u_l2_i,
T* __restrict__ lamb_coeff_val)
{
// Assuming 2D grids and 2D blocks
const int blockId = gridDim.x * blockIdx.y + blockIdx.x;
const int threadsPerBlock = blockDim.x * blockDim.y;
const int threadIdInBlock = cg::this_thread_block().thread_rank();
const int i = (blockId * threadsPerBlock + threadIdInBlock);
const int totThreads = gridDim.x * gridDim.y * threadsPerBlock;
T reg_w = sqrtf(w_l2_i[0]);
T reg_u = sqrtf(u_l2_i[0]);
float lamb_coeff = 1.0;
if (reg_w != 0 and reg_u != 0) {
lamb_coeff = reg_w / reg_u;
if (lamb_coeff > max_coeff) { lamb_coeff = max_coeff; }
if (lamb_coeff < min_coeff) { lamb_coeff = min_coeff; }
}
if (blockId == 0 and threadIdInBlock == 0) {
lamb_coeff_val[0] = lamb_coeff;
// printf("Cuda Lamb Coeff is %.6f \n",lamb_coeff);
}
for (int j = i; j < tsize; j += totThreads) {
T pj = (float)p[j];
T mj = m[j];
T vj = v[j];
float denom;
if (mode == ADAM_MODE_0)
denom = sqrtf(vj + eps);
else // Mode 1
denom = sqrtf(vj) + eps;
T update = (mj / denom) + (decay * pj);
pj = pj - (step_size * lamb_coeff * update);
p[j] = pj;
if (p_copy != NULL) p_copy[j] = (GRAD_T)pj;
}
}
void fused_lamb_cuda(at::Tensor& p,
at::Tensor& p_copy,
at::Tensor& m,
at::Tensor& v,
at::Tensor& g,
float lr,
float beta1,
float beta2,
float max_coeff,
float min_coeff,
float eps,
float grad_scale,
int step,
int mode,
int bias_correction,
float decay,
at::Tensor& w_l2_i,
at::Tensor& u_l2_i,
at::Tensor& lamb_coeff)
{
// using namespace at;
// Get tensor size
int tsize = p.numel();
// Determine #threads and #blocks
const int threadsPerBlock = 512;
int num_blocks = (tsize + threadsPerBlock - 1) / threadsPerBlock;
if (num_blocks > 512) num_blocks = 512;
int smemsize = 0;
if (p.type().scalarType() == at::ScalarType::Double)
smemsize = 2 * threadsPerBlock * sizeof(double);
else
smemsize = 2 * threadsPerBlock * sizeof(float);
const dim3 blocks(num_blocks);
const dim3 threads(threadsPerBlock);
AT_ASSERTM(at::cuda::detail::canUse32BitIndexMath(p),
"parameter tensor is too large to be indexed with int32");
// Constants
float step_size = 0;
if (bias_correction == 1) {
const float bias_correction1 = 1 - ::pow(beta1, step);
const float bias_correction2 = 1 - ::pow(beta2, step);
step_size = lr * std::sqrt(bias_correction2) / bias_correction1;
} else {
step_size = lr;
}
hipStream_t stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
if (g.type().scalarType() == at::ScalarType::Half) {
// all other values should be fp32 for half gradients
AT_ASSERTM(p.type().scalarType() == at::ScalarType::Float,
"expected parameter to be of float type");
// dispatch is done on the gradient type
using namespace at; // prevents "toString is undefined" errors
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
g.scalar_type(), "lamb_cuda_kernel", ([&] {
using accscalar_t = at::acc_type<scalar_t, true>;
hipLaunchKernelGGL(( lamb_cuda_kernel_part1<accscalar_t, scalar_t, threadsPerBlock>)
, dim3(blocks), dim3(threadsPerBlock), smemsize, stream,
p.data<accscalar_t>(),
p_copy.numel() ? p_copy.data<scalar_t>() : NULL,
m.data<accscalar_t>(),
v.data<accscalar_t>(),
g.data<scalar_t>(),
beta1,
beta2,
eps,
grad_scale,
step_size,
tsize,
(adamMode_t)mode,
decay,
w_l2_i.data<accscalar_t>(),
u_l2_i.data<accscalar_t>());
hipLaunchKernelGGL(( lamb_cuda_kernel_part2<accscalar_t, scalar_t, threadsPerBlock>)
, dim3(1), dim3(threadsPerBlock), smemsize, stream,
num_blocks, w_l2_i.data<accscalar_t>(), u_l2_i.data<accscalar_t>());
hipLaunchKernelGGL(( lamb_cuda_kernel_part3<accscalar_t, scalar_t>)
, dim3(blocks), dim3(threadsPerBlock), smemsize, stream,
p.data<accscalar_t>(),
p_copy.numel() ? p_copy.data<scalar_t>() : NULL,
m.data<accscalar_t>(),
v.data<accscalar_t>(),
g.data<scalar_t>(),
beta1,
beta2,
max_coeff,
min_coeff,
eps,
grad_scale,
step_size,
tsize,
(adamMode_t)mode,
decay,
w_l2_i.data<accscalar_t>(),
u_l2_i.data<accscalar_t>(),
lamb_coeff.data<accscalar_t>());
}));
} else {
using namespace at;
AT_DISPATCH_FLOATING_TYPES(
g.scalar_type(), "lamb_cuda_kernel", ([&] {
hipLaunchKernelGGL(( lamb_cuda_kernel_part1<scalar_t, scalar_t, threadsPerBlock>)
, dim3(blocks), dim3(threadsPerBlock), smemsize, stream,
p.data<scalar_t>(),
NULL, // don't output p_copy for fp32, it's wasted write
m.data<scalar_t>(),
v.data<scalar_t>(),
g.data<scalar_t>(),
beta1,
beta2,
eps,
grad_scale,
step_size,
tsize,
(adamMode_t)mode,
decay,
w_l2_i.data<scalar_t>(),
u_l2_i.data<scalar_t>());
hipLaunchKernelGGL(( lamb_cuda_kernel_part2<scalar_t, scalar_t, threadsPerBlock>)
, dim3(1), dim3(threadsPerBlock), smemsize, stream,
num_blocks, w_l2_i.data<scalar_t>(), u_l2_i.data<scalar_t>());
hipLaunchKernelGGL(( lamb_cuda_kernel_part3<scalar_t, scalar_t>)
, dim3(blocks), dim3(threadsPerBlock), smemsize, stream,
p.data<scalar_t>(),
NULL, // don't output p_copy for fp32, it's wasted write
m.data<scalar_t>(),
v.data<scalar_t>(),
g.data<scalar_t>(),
beta1,
beta2,
max_coeff,
min_coeff,
eps,
grad_scale,
step_size,
tsize,
(adamMode_t)mode,
decay,
w_l2_i.data<scalar_t>(),
u_l2_i.data<scalar_t>(),
lamb_coeff.data<scalar_t>());
}));
}
THCudaCheck(hipGetLastError());
}
// template __device__ void reduce_two_vectors_in_register<float,512>(float a, float b, float* g_a,
// float* g_b, cg::grid_group &cgg);
// DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
// https://github.com/ptillet/torch-blocksparse/blob/master/csrc/utils.cpp
#include <torch/extension.h>
#include <string>
#include <tuple>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
typedef std::vector<std::tuple<int, torch::Tensor>> ret_t;
void segment_blocks(torch::Tensor layout,
torch::Tensor idx,
torch::Tensor scratch,
int max_width,
ret_t& ret)
{
size_t H = layout.size(0);
size_t M = layout.size(1);
size_t N = layout.size(2);
torch::Tensor tmp = torch::zeros_like(layout);
auto _tmp = tmp.accessor<int, 3>();
auto _layout = layout.accessor<int, 3>();
auto _idx = idx.accessor<int, 3>();
auto _scratch = scratch.accessor<int, 3>();
std::vector<int> current(H, 0);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (size_t h = 0; h < H; h++) {
// surrounding indices
std::vector<int> ii_left(max_width, -1);
std::vector<std::vector<int>> ii_top(max_width, std::vector<int>(N, -1));
for (size_t m = 0; m < M; m++) {
for (size_t n = 0; n < N; n++) {
int v = _layout[h][m][n];
if (v == 0) continue;
int n_left = ii_left[max_width - 1];
int m_top = ii_top[max_width - 1][n];
int top = (m_top >= 0) ? _tmp[h][m_top][n] : 0;
int left = (n_left >= 0) ? _tmp[h][m][n_left] : 0;
int topleft = (m_top >= 0 && n_left >= 0) ? _tmp[h][m_top][n_left] : 0;
int width = std::min(left, std::min(top, topleft)) + 1;
// reset width if blocks cannot be
// packed together (i.e., there's a 1 "in the middle")
for (int nn = n_left + 1; nn < n; nn++)
if (ii_top[max_width - 1][nn] > ii_top[max_width - 1][n]) width = 1;
_tmp[h][m][n] = width;
// update n_left ring buffer
for (int k = 0; k < max_width - 1; k++) ii_left[k] = ii_left[k + 1];
ii_left[max_width - 1] = n;
// update ii_top ring buffer
for (int k = 0; k < max_width - 1; k++) ii_top[k][n] = ii_top[k + 1][n];
ii_top[max_width - 1][n] = m;
// block is too small -- skip
if (width != max_width) continue;
// retained blocks are set to zeros
for (size_t km = 0; km < max_width; km++)
for (size_t kn = 0; kn < max_width; kn++) {
int mm = ii_top[km][n];
int nn = ii_left[kn];
if (mm < 0 || nn < 0) continue;
_layout[h][mm][nn] = 0;
_tmp[h][mm][nn] = 0;
_scratch[h][current[h]][0] = (int)h;
_scratch[h][current[h]][1] = (int)mm;
_scratch[h][current[h]][2] = (int)nn;
_scratch[h][current[h]][3] = _idx[h][mm][nn];
current[h]++;
}
}
}
}
std::vector<torch::Tensor> to_cat;
for (size_t h = 0; h < H; h++)
if (current[h] > 0) to_cat.push_back(scratch[h].slice(0, 0, current[h]));
if (!to_cat.empty()) ret.push_back({max_width, torch::cat(to_cat)});
}
ret_t sdd_segment(torch::Tensor layout, int start_width)
{
ret_t ret;
// block index
torch::Tensor idx = torch::zeros_like(layout);
int current = 0;
size_t H = layout.size(0);
size_t M = layout.size(1);
size_t N = layout.size(2);
auto _layout = layout.accessor<int, 3>();
auto _idx = idx.accessor<int, 3>();
for (size_t h = 0; h < H; h++)
for (size_t m = 0; m < M; m++)
for (size_t n = 0; n < N; n++) {
if (_layout[h][m][n] == 0) continue;
_idx[h][m][n] = current++;
}
// scratch memory
//torch::Tensor scratch = torch::empty({H, layout.sum().item<int>(), 4}, layout.dtype());
//aiss debug
torch::Tensor scratch = torch::empty({(long)H, layout.sum().item<int>(), 4}, layout.dtype());
for (int max_width = start_width; max_width > 0; max_width /= 2)
segment_blocks(layout, idx, scratch, max_width, ret);
return ret;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("sdd_segment", &sdd_segment, "SDD segmentation handler");
}
#include "hip/cublas_wrappers.h"
int cublas_gemm_ex(rocblas_handle handle,
rocblas_operation transa,
rocblas_operation transb,
int m,
int n,
int k,
const float* alpha,
const float* beta,
const float* A,
const float* B,
float* C,
//cublasGemmAlgo_t algo)
rocblas_gemm_algo algo)
{
rocblas_status status = rocblas_gemm_ex(handle,
transa,
transb,
m,
n,
k,
(const void*)alpha,
(const void*)A,
rocblas_datatype_f32_r,
(transa == rocblas_operation_none) ? m : k,
(const void*)B,
rocblas_datatype_f32_r,
(transb == rocblas_operation_none) ? k : n,
(const void*)beta,
C,
rocblas_datatype_f32_r,
m,
C,
rocblas_datatype_f32_r,
m,
rocblas_datatype_f32_r,
algo,
0,
0);
if (status != rocblas_status_success) {
fprintf(stderr,
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
m,
n,
k,
(int)status);
return EXIT_FAILURE;
}
return 0;
}
int cublas_gemm_ex(rocblas_handle handle,
rocblas_operation transa,
rocblas_operation transb,
int m,
int n,
int k,
const float* alpha,
const float* beta,
const __half* A,
const __half* B,
__half* C,
//cublasGemmAlgo_t algo)
rocblas_gemm_algo algo)
{
rocblas_status status = rocblas_gemm_ex(handle,
transa,
transb,
m,
n,
k,
(const void*)alpha,
(const void*)A,
rocblas_datatype_f16_r,
(transa == rocblas_operation_none) ? m : k,
(const void*)B,
rocblas_datatype_f16_r,
(transb == rocblas_operation_none) ? k : n,
(const void*)beta,
(void*)C,
rocblas_datatype_f16_r,
m,
(void*)C,
rocblas_datatype_f16_r,
m,
rocblas_datatype_f16_r,
algo,
0,
0);
if (status != rocblas_status_success) {
fprintf(stderr,
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
m,
n,
k,
(int)status);
return EXIT_FAILURE;
}
return 0;
}
int cublas_strided_batched_gemm(rocblas_handle handle,
int m,
int n,
int k,
const float* alpha,
const float* beta,
const float* A,
const float* B,
float* C,
rocblas_operation op_A,
rocblas_operation op_B,
int stride_A,
int stride_B,
int stride_C,
int batch,
rocblas_gemm_algo algo)
{
rocblas_status status = rocblas_gemm_strided_batched_ex(handle,
op_A,
op_B,
m,
n,
k,
alpha,
A,
rocblas_datatype_f32_r,
(op_A == rocblas_operation_none) ? m : k,
stride_A,
B,
rocblas_datatype_f32_r,
(op_B == rocblas_operation_none) ? k : n,
stride_B,
beta,
C,
rocblas_datatype_f32_r,
m,
stride_C,
C,
rocblas_datatype_f32_r,
m,
stride_C,
batch,
rocblas_datatype_f32_r,
algo,
0,
0);
if (status != rocblas_status_success) {
fprintf(stderr,
"!!!! kernel execution error. (batch: %d, m: %d, n: %d, k: %d, error: %d) \n",
batch,
m,
n,
k,
(int)status);
return EXIT_FAILURE;
}
return 0;
}
int cublas_strided_batched_gemm(rocblas_handle handle,
int m,
int n,
int k,
const float* alpha,
const float* beta,
const __half* A,
const __half* B,
__half* C,
rocblas_operation op_A,
rocblas_operation op_B,
int stride_A,
int stride_B,
int stride_C,
int batch,
rocblas_gemm_algo algo)
{
rocblas_status status = rocblas_gemm_strided_batched_ex(handle,
op_A,
op_B,
m,
n,
k,
alpha,
A,
rocblas_datatype_f16_r,
(op_A == rocblas_operation_none) ? m : k,
stride_A,
B,
rocblas_datatype_f16_r,
(op_B == rocblas_operation_none) ? k : n,
stride_B,
beta,
C,
rocblas_datatype_f16_r,
m,
stride_C,
C,
rocblas_datatype_f16_r,
m,
stride_C,
batch,
rocblas_datatype_f16_r,
algo,
0,
0);
if (status != rocblas_status_success) {
fprintf(stderr,
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
m,
n,
k,
(int)status);
return EXIT_FAILURE;
}
return 0;
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment