@@ -25,7 +25,7 @@ to add DeepSpeed's builtin arguments to your application's parser.
Training Initialization
-----------------------
The entrypoint for all training with DeepSpeed is ``deepspeed.initialize()``.
The entrypoint for all training with DeepSpeed is ``deepspeed.initialize()``. Will initialize distributed backend if it is not intialized already.
Example usage:
...
...
@@ -36,3 +36,9 @@ Example usage:
model_parameters=net.parameters())
.. autofunction:: deepspeed.initialize
Distributed Initialization
-----------------------
Optional distributed backend initializating separate from ``deepspeed.initialize()``. Useful in scenarios where the user wants to use torch distributed calls before calling ``deepspeed.initialize()``, such as when using model parallelism, pipeline parallelism, or certain data loader scenarios.