from dataflow.operators.core_text import PromptedGenerator from dataflow.serving import LocalModelLLMServing_sglang, LocalModelLLMServing_vllm from dataflow.utils.storage import FileStorage from dataflow.wrapper import BatchWrapper if __name__ == "__main__": storage = FileStorage( # first_entry_file_name="../example_data/GeneralTextPipeline/translation.jsonl", first_entry_file_name="./dataflow/example/GeneralTextPipeline/translation.jsonl", cache_path="./cache/temp0_2_topp0_9", file_name_prefix="translation", cache_type="json", ) llm_serving = LocalModelLLMServing_sglang( hf_model_name_or_path="/data0/public_models/Qwen2.5-VL-7B-Instruct", sgl_dp_size=1, # data parallel size sgl_tp_size=1, # tensor parallel size sgl_mem_fraction_static=0.8, ) # llm_serving = LocalModelLLMServing_vllm( # hf_model_name_or_path="/data0/public_models/Qwen2.5-VL-7B-Instruct" # ) op = PromptedGenerator( llm_serving=llm_serving, system_prompt="请将后续内容都翻译成中文,不要续写。:\n", ) batched_op = BatchWrapper(op, batch_size=3, batch_cache=True) batched_op.run( storage=storage.step(), input_key="raw_content", )