from dataflow.operators.core_text import PromptedGenerator from dataflow.serving import APILLMServing_request from dataflow.utils.storage import FileStorage class GPT_generator(): def __init__(self): self.storage = FileStorage( first_entry_file_name="../../dataflow/example/GeneralTextPipeline/math_100.jsonl", cache_path="./cache", file_name_prefix="math_QA", cache_type="jsonl", ) self.model_cache_dir = './dataflow_cache' self.llm_serving = APILLMServing_request( api_url="http://123.129.219.111:3000/v1/chat/completions", model_name="gpt-4o", max_workers=50 ) self.prompt_generator = PromptedGenerator( llm_serving = self.llm_serving, system_prompt = "Please solve this math problem. Answer in JSON format.", json_schema={ "type": "object", "properties": { "problem": { "type": "string", "description": "The math problem that needs to be solved." }, "solution": { "type": "string", "description": "Step-by-step reasoning and solution process." }, "answer": { "type": "string", "description": "The final answer to the math problem." } }, "required": ["problem", "solution", "answer"], "additionalProperties": False } ) def forward(self): # Initial filters self.prompt_generator.run( storage = self.storage.step(), input_key = "problem", ) if __name__ == "__main__": # This is the entry point for the pipeline model = GPT_generator() model.forward()