#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest import numpy as np import torch from detectron2.data import DatasetCatalog, DatasetFromList, MapDataset from detectron2.engine import SimpleTrainer from d2go.modeling.kmeans_anchors import ( add_kmeans_anchors_cfg, compute_kmeans_anchors, compute_kmeans_anchors_hook, ) from d2go.runner import GeneralizedRCNNRunner from mobile_cv.common.misc.file_utils import make_temp_directory from torch.utils.data.sampler import BatchSampler, Sampler from d2go.tests.data_loader_helper import LocalImageGenerator, register_toy_dataset class IntervalSampler(Sampler): def __init__(self, size: int, interval: int): self._local_indices = range(0, size, interval) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) def build_sequence_loader(cfg, dataset_name, mapper, total_samples, batch_size=1): """ Similar to `build_detection_test_loader` in the way that its sampler samples dataset_dicts in order and only loops once. """ dataset_dicts = DatasetCatalog.get(dataset_name) dataset = DatasetFromList(dataset_dicts) dataset = MapDataset(dataset, mapper) interval = max(1, int(len(dataset) / total_samples)) sampler = IntervalSampler(len(dataset), interval) batch_sampler = BatchSampler(sampler, batch_size, drop_last=False) def _trivial_batch_collator(batch): return batch data_loader = torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=batch_sampler, collate_fn=_trivial_batch_collator, ) return data_loader class TestKmeansAnchors(unittest.TestCase): def setUp(self): self.runner = GeneralizedRCNNRunner() def _get_default_cfg(self): cfg = self.runner.get_default_cfg() add_kmeans_anchors_cfg(cfg) return cfg @unittest.skip("This can only run locally and takes significant of time") def test_matching_previous_results(self): cfg = self._get_default_cfg() cfg.INPUT.MIN_SIZE_TRAIN = (144,) cfg.MODEL.KMEANS_ANCHORS.KMEANS_ANCHORS_ON = True cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS = 10 cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG = 512 cfg.MODEL.KMEANS_ANCHORS.DATASETS = () # NOTE: create a data loader that samples exact the same as previous # implementation. In D2Go, we will rely on the train loader instead. # NOTE: in order to load OV580_XRM dataset, change the IM_DIR to: # "/mnt/vol/gfsai-east/aml/mobile-vision//dataset/oculus/hand_tracking//torch/Segmentation/OV580_XRM_640x480_V3_new_rerun/images" # noqa data_loader = build_sequence_loader( cfg, # dataset_name="coco_2014_valminusminival", # dataset_name="OV580_XRM_640x480_V3_train", dataset_name="OV580_XRM_640x480_V3_heldOut_small_512", mapper=self.runner.get_mapper(cfg, is_train=True), total_samples=cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG, batch_size=3, ) kmeans_anchors = compute_kmeans_anchors( cfg, data_loader, sort_by_area=False, _stride=16, _legacy_plus_one=True ) # Taken from D9849940 reference_anchors = np.array( [ [-15.33554182, -15.29361029, 31.33554182, 31.29361029], # noqa [-9.34156693, -9.32553548, 25.34156693, 25.32553548], # noqa [-6.03052776, -6.02034167, 22.03052776, 22.02034167], # noqa [-2.25951741, -2.182888, 18.25951741, 18.182888], # noqa [-18.93553378, -18.93553403, 34.93553378, 34.93553403], # noqa [-12.69068356, -12.73989029, 28.69068356, 28.73989029], # noqa [-24.73489189, -24.73489246, 40.73489189, 40.73489246], # noqa [-4.06014466, -4.06014469, 20.06014466, 20.06014469], # noqa [-7.61036119, -7.60467538, 23.61036119, 23.60467538], # noqa [-10.88200579, -10.87634414, 26.88200579, 26.87634414], # noqa ] ) np.testing.assert_allclose(kmeans_anchors, reference_anchors, atol=1e-6) def test_build_model(self): cfg = self._get_default_cfg() cfg.INPUT.MIN_SIZE_TRAIN = (60,) cfg.MODEL.KMEANS_ANCHORS.KMEANS_ANCHORS_ON = True cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS = 3 cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG = 5 cfg.MODEL.KMEANS_ANCHORS.DATASETS = ("toy_dataset",) cfg.MODEL.DEVICE = "cpu" cfg.MODEL.ANCHOR_GENERATOR.NAME = "KMeansAnchorGenerator" with make_temp_directory("detectron2go_tmp_dataset") as dataset_dir: image_dir = os.path.join(dataset_dir, "images") os.makedirs(image_dir) image_generator = LocalImageGenerator(image_dir, width=80, height=60) with register_toy_dataset( "toy_dataset", image_generator, num_images=cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG, ): model = self.runner.build_model(cfg) trainer = SimpleTrainer(model, data_loader=[], optimizer=None) trainer_hooks = [compute_kmeans_anchors_hook(self.runner, cfg)] trainer.register_hooks(trainer_hooks) trainer.before_train() anchor_generator = model.proposal_generator.anchor_generator cell_anchors = [x for x in anchor_generator.cell_anchors] gt_anchors = np.array( [ [-20, -15, 20, 15] # toy_dataset's bbox is half size of image for _ in range(cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS) ] ) np.testing.assert_allclose(cell_anchors[0], gt_anchors) if __name__ == "__main__": unittest.main()