MODEL: META_ARCHITECTURE: "GeneralizedRCNN" MASK_ON: False FBNET_V2: ARCH: "FBNetV3_G_fpn" NORM: "naiveSyncBN" WIDTH_DIVISOR: 8 BACKBONE: NAME: FBNetV2FpnBackbone FREEZE_AT: 0 RESNETS: DEPTH: 50 OUT_FEATURES: ["res2", "res3", "res4", "res5"] FPN: IN_FEATURES: [trunk1, trunk2, trunk3, trunk4] NORM: "naiveSyncBN" OUT_CHANNELS: 128 # NOTE: reduce from default 256 channels ANCHOR_GENERATOR: SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps) RPN: HEAD_NAME: FBNetV2RpnHead IN_FEATURES: [p2, p3, p4, p5, p6] # Default values are 12000/2000 for train and 6000/1000 for test. In FBNet # we use smaller numbers. TODO: reduce proposals for test in .yaml directly. PRE_NMS_TOPK_TRAIN: 2000 POST_NMS_TOPK_TRAIN: 2000 PRE_NMS_TOPK_TEST: 1000 POST_NMS_TOPK_TEST: 1000 ROI_HEADS: NAME: StandardROIHeads IN_FEATURES: [p3, p4, p5, p6] ROI_BOX_HEAD: NAME: FBNetV2RoIBoxHead POOLER_RESOLUTION: 6 NORM: "naiveSyncBN" ROI_MASK_HEAD: NAME: "MaskRCNNConvUpsampleHead" NUM_CONV: 4 POOLER_RESOLUTION: 14 MODEL_EMA: ENABLED: True DECAY: 0.9998 DATASETS: TRAIN: ("coco_2017_train",) TEST: ("coco_2017_val",) SOLVER: IMS_PER_BATCH: 32 BASE_LR: 0.16 STEPS: (60000, 80000) MAX_ITER: 450000 LR_SCHEDULER_NAME: WarmupCosineLR TEST: EVAL_PERIOD: 5000 INPUT: MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) VERSION: 2