#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest import torch from d2go.runner.default_runner import GeneralizedRCNNRunner from d2go.tools.exporter import main from d2go.utils.testing.rcnn_helper import get_quick_test_config_opts from mobile_cv.common.misc.file_utils import make_temp_directory def maskrcnn_export_legacy_vs_new_format_example(): with make_temp_directory("export_demo") as tmp_dir: # START_WIKI_EXAMPLE_TAG runner = GeneralizedRCNNRunner() cfg = runner.get_default_cfg() cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") cfg.merge_from_list(get_quick_test_config_opts()) # equivalent to running: # exporter.par --runner GeneralizedRCNNRunner --config-file config.yaml --predictor-types torchscript tourchscript@legacy --output-dir tmp_dir _ = main( cfg, tmp_dir, runner, predictor_types=["torchscript@legacy", "torchscript"] ) # the path can be fetched from the return of main, here just use hard-coded values new_path = os.path.join(tmp_dir, "torchscript", "model.jit") lagacy_path = os.path.join(tmp_dir, "torchscript@legacy", "model.jit") new_model = torch.jit.load(new_path) legacy_model = torch.jit.load(lagacy_path) # Running inference using new format image = torch.zeros(1, 64, 96) # chw 3D tensor new_outputs = new_model(image) # suppose N instances are detected # NOTE: the output are flattened tensors of the real output (which is a dict), they're # ordered by the key in dict, which is deterministic for the given model, but it might # be difficult to figure out just from model.jit file. The predictor_info.json from # the same directory contains the `outputs_schema`, which indicate how the final output # is constructed from flattened tensors. pred_boxes = new_outputs[0] # torch.Size([N, 4]) pred_classes = new_outputs[1] # torch.Size([N]) pred_masks = new_outputs[2] # torch.Size([N, 1, Hmask, Wmask]) scores = new_outputs[3] # torch.Size([N]) # Running inference using legacy caffe2 format data = torch.zeros(1, 1, 64, 96) im_info = torch.tensor([[64, 96, 1.0]]) legacy_outputs = legacy_model([data, im_info]) # NOTE: the output order is determined in the order of creating the tensor during # forward function, it's also follow the order of original Caffe2 model. roi_bbox_nms = legacy_outputs[0] # torch.Size([N, 4]) roi_score_nms = legacy_outputs[1] # torch.Size([N]) roi_class_nms = legacy_outputs[2] # torch.Size([N]) mask_fcn_probs = legacy_outputs[3] # torch.Size([N, Cmask, Hmask, Wmask]) # relations between legacy outputs and new outputs torch.testing.assert_allclose(pred_boxes, roi_bbox_nms) torch.testing.assert_allclose(pred_classes, roi_class_nms) torch.testing.assert_allclose( pred_masks, mask_fcn_probs[:, roi_class_nms.to(torch.int64), :, :] ) torch.testing.assert_allclose(scores, roi_score_nms) # END_WIKI_EXAMPLE_TAG class TestOptimizer(unittest.TestCase): def test_maskrcnn_export_legacy_vs_new_format_example(self): maskrcnn_export_legacy_vs_new_format_example()