MODEL: META_ARCHITECTURE: "GeneralizedRCNN" MASK_ON: True FBNET_V2: ARCH: "FBNetV3_A_dsmask" NORM: "naiveSyncBN" WIDTH_DIVISOR: 8 BACKBONE: NAME: FBNetV2C4Backbone ANCHOR_GENERATOR: # SIZES: [[32, 64, 128, 256, 512]] # NOTE: for smaller resolution (320 < 512) SIZES: [[32, 64, 96, 128, 160]] ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps) RPN: HEAD_NAME: FBNetV2RpnHead IN_FEATURES: ["trunk3"] # Default values are 12000/2000 for train and 6000/1000 for test. In FBNet # we use smaller numbers. TODO: reduce proposals for test in .yaml directly. PRE_NMS_TOPK_TRAIN: 2000 POST_NMS_TOPK_TRAIN: 2000 PRE_NMS_TOPK_TEST: 1000 POST_NMS_TOPK_TEST: 30 ROI_HEADS: NAME: StandardROIHeads IN_FEATURES: ["trunk3"] ROI_BOX_HEAD: NAME: FBNetV2RoIBoxHead POOLER_RESOLUTION: 6 NORM: "naiveSyncBN" ROI_MASK_HEAD: NAME: "FBNetV2RoIMaskHead" POOLER_RESOLUTION: 14 NORM: "naiveSyncBN" MODEL_EMA: ENABLED: True DECAY: 0.9998 DATASETS: TRAIN: ("coco_2017_train",) TEST: ("coco_2017_val",) SOLVER: IMS_PER_BATCH: 32 BASE_LR: 0.16 STEPS: (60000, 80000) MAX_ITER: 540000 LR_SCHEDULER_NAME: WarmupCosineLR TEST: EVAL_PERIOD: 10000 INPUT: MAX_SIZE_TEST: 320 MAX_SIZE_TRAIN: 320 MIN_SIZE_TEST: 224 MIN_SIZE_TRAIN: (224,) VERSION: 2