from itertools import product import math import pytest import torch from tests.helpers import TRUE_FALSE, describe_dtype, id_formatter transformers = pytest.importorskip("transformers") def get_4bit_config(): return transformers.BitsAndBytesConfig( load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) def get_model_and_tokenizer(config): model_name_or_path, quant_type = config bnb_config = get_4bit_config() if quant_type == "16bit": bnb_config.load_in_4bit = False else: bnb_config.bnb_4bit_quant_type = quant_type model = transformers.AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=bnb_config, max_memory={0: "48GB"}, device_map="auto", torch_dtype=torch.bfloat16, ).eval() tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path) return model, tokenizer def get_prompt_for_generation_eval(text, add_roles=True): description = ( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ) if add_roles: prompt = f"{description} ### Human: {text} ### Assistant:" else: prompt = f"{description} {text}" return prompt def generate(model, tokenizer, text, generation_config, prompt_func=get_prompt_for_generation_eval): text = prompt_func(text) inputs = tokenizer(text, return_tensors="pt").to("cuda:0") outputs = model.generate(inputs=inputs["input_ids"], generation_config=generation_config) return tokenizer.decode(outputs[0], skip_special_tokens=True) models = ["bigscience/bloom-1b7"] dtypes = ["nf4", "fp4"] @pytest.fixture(scope="session", params=product(models, dtypes)) def model_and_tokenizer(request): model, tokenizer = get_model_and_tokenizer(request.param) yield request.param, model, tokenizer del model @pytest.mark.parametrize("DQ", TRUE_FALSE, ids=id_formatter("dq")) @pytest.mark.parametrize("inference_kernel", TRUE_FALSE, ids=id_formatter("inference_kernel")) @pytest.mark.parametrize("dtype", [torch.float16], ids=describe_dtype) @pytest.mark.slow def test_pi(requires_cuda, model_and_tokenizer, inference_kernel, DQ, dtype): fixture_config, model, tokenizer = model_and_tokenizer generation_config = transformers.GenerationConfig( max_new_tokens=20, do_sample=True, top_p=0.9, temperature=0.7, ) generation_config.max_new_tokens = 20 # text = 'Please write down the first 50 digits of pi.' # text = get_prompt_for_generation_eval(text) # text += ' Sure, here the first 50 digits of pi: 3.14159' n_cases = 6 text = "3.14159" if hasattr(model.config, "quantization_config"): model.config.quantization_config.bnb_4bit_compute_dtype = dtype model.config.quantization_config.bnb_4bit_use_double_quant = DQ if not inference_kernel: text = [text] * n_cases inputs = tokenizer(text, return_tensors="pt").to("cuda:0") x = inputs["input_ids"] outputs = [] if inference_kernel: for i in range(n_cases): output = model.generate(x, generation_config=generation_config) textout = tokenizer.decode(output[0], skip_special_tokens=True) outputs.append(textout) else: outputs = model.generate(x, generation_config=generation_config) outputs = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] assert len(outputs) == n_cases failure_count = 0 for i in range(n_cases): if outputs[i][: len(str(math.pi))] != str(math.pi): failure_count += 1 failure_max = 2 if fixture_config[0] == "huggyllama/llama-7b" else 4 if failure_count > failure_max: print(math.pi) for out in outputs: print(out) raise ValueError(f"Failure count: {failure_count}/{n_cases}")