# Papers, related resources & how to cite The below academic work is ordered in reverse chronological order. ## [SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression (Jun 2023)](https://arxiv.org/abs/2306.03078) Authors: Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, Dan Alistarh - [Twitter summary thread](https://twitter.com/Tim_Dettmers/status/1666076553665744896) ``` @article{dettmers2023spqr, title={SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression}, author={Dettmers, Tim and Svirschevski, Ruslan and Egiazarian, Vage and Kuznedelev, Denis and Frantar, Elias and Ashkboos, Saleh and Borzunov, Alexander and Hoefler, Torsten and Alistarh, Dan}, journal={arXiv preprint arXiv:2306.03078}, year={2023} } ``` ## [QLoRA: Efficient Finetuning of Quantized LLMs (May 2023)](https://arxiv.org/abs/2305.14314) Authors: Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer - [Video](https://www.youtube.com/watch?v=y9PHWGOa8HA&ab_channel=LondonMachineLearningMeetup) - [Twitter summary thread](https://twitter.com/Tim_Dettmers/status/1661379354507476994) ``` @article{dettmers2023qlora, title={Qlora: Efficient finetuning of quantized llms}, author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:2305.14314}, year={2023} } ``` ## [The case for 4-bit precision: k-bit Inference Scaling Laws (Dec 2022)](https://arxiv.org/abs/2212.09720) Authors: Tim Dettmers, Luke Zettlemoyer - [Video](https://www.youtube.com/watch?v=odlQa6AE1gY&ab_channel=TheInsideView) - [Twitter summary thread](https://twitter.com/Tim_Dettmers/status/1605209171758284805) ``` @inproceedings{dettmers2023case, title={The case for 4-bit precision: k-bit inference scaling laws}, author={Dettmers, Tim and Zettlemoyer, Luke}, booktitle={International Conference on Machine Learning}, pages={7750--7774}, year={2023}, organization={PMLR} } ``` ## [LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Nov 2022)](https://arxiv.org/abs/2208.07339) Authors: Tim Dettmers, Mike Lewis, Younes Belkada, Luke Zettlemoyer - [LLM.int8() Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) - [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/) - [Introduction to Weight Quantization](https://towardsdatascience.com/introduction-to-weight-quantization-2494701b9c0c) - [Poster](https://twitter.com/Tim_Dettmers/status/1598351301942951937) ``` @article{dettmers2022llm, title={Llm. int8 (): 8-bit matrix multiplication for transformers at scale}, author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:2208.07339}, year={2022} } ``` ## [8-bit Optimizers via Block-wise Quantization (Oct 2021)](https://arxiv.org/abs/2110.02861) Authors: Tim Dettmers, Mike Lewis, Sam Shleifer, Luke Zettlemoyer - [Video](https://www.youtube.com/watch?v=IxrlHAJtqKE) - [Twitter summary thread](https://twitter.com/Tim_Dettmers/status/1446472128979562499) ``` @article{DBLP:journals/corr/abs-2110-02861, author = {Tim Dettmers and Mike Lewis and Sam Shleifer and Luke Zettlemoyer}, title = {8-bit Optimizers via Block-wise Quantization}, journal = {CoRR}, volume = {abs/2110.02861}, year = {2021}, url = {https://arxiv.org/abs/2110.02861}, eprinttype = {arXiv}, eprint = {2110.02861}, timestamp = {Thu, 21 Oct 2021 16:20:08 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2110-02861.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```